首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the determination of the complete primary structure of the adhesin receptor polysaccharide of Streptococcus oralis ATCC 55229 (previously characterized as Streptococcus sanguis H1), a Gram-positive bacteria implicated in dental plaque formation. The polysaccharide was isolated from S. oralis ATCC 55229 cells after deproteination, enzymatic hydrolysis, and ion exchange chromatography. It was shown to consist of rhamnose, galactose, glucose, glycerol, and phosphate, in molar ratios of 2:3:1:1:1. Sequence and linkage assignments of the glycosyl residues were obtained by methylation analysis followed by gas-liquid chromatography and electron-impact mass spectrometry. 31P NMR spectroscopy revealed that phosphate was present in a diester, connecting glycerol to one of the galactosyl residues. High-performance liquid chromatography of a partial acid hydrolysate of the polysaccharide confirmed this finding by showing galactose 6-phosphate and glycerol 1-phosphate. The structural determination was completed by the combination of two-dimensional homonuclear Hartmann-Hahn and NOE experiments and heteronuclear [1H,13C] and [1H,31P] multiple-quantum coherence experiments. Thus, the adhesin receptor polysaccharide of S. oralis ATCC 55229 was found to be a polymer composed of hexasaccharide repeating units that contain glycerol linked through a phosphodiester to C6 of the alpha-galactopyranosyl residue and are joined end-to-end through galactofuranosyl-beta(1-->3)-rhamnopyranosyl linkages: [formula: see text] This structure is novel among bacterial cell surface polysaccharides in general and specifically among those implicated in dental plaque formation.  相似文献   

2.
Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. These streptococci all coaggregated strongly with both A. viscosus and A. naesludii strains, whereas S. oralis C104 interacted preferentially with certain strains of the latter species. Receptor polysaccharide was isolated from S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The 1H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by 1H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments (1H and 13C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages with the following structure. [----6)Galf(beta 1----3)Galp(beta 1----6)Galf(beta 1----6)GalpNAc(beta 1----3) Galp(alpha 1----1)ribitol(5----PO4-]n  相似文献   

3.
Coaggregation between Streptococcus sanguis H1 and Capnocytophaga ochracea ATCC 33596 cells is mediated by a carbohydrate receptor on the former and an adhesin on the latter. Two methods were used to release the carbohydrate receptor from the gram-positive streptococcus, autoclaving and mutanolysin treatment. The polysaccharide released from the streptococcal cell wall by either treatment was purified by ion-exchange chromatography; this polysaccharide inhibited coaggregation when preincubated with the gram-negative capnocytophaga partner. After hydrolysis of the polysaccharide by hydrofluoric acid (HF), the major oligosaccharide of the polysaccharide was purified by high-performance liquid chromatography. By analysis of the HF hydrolysis of the polysaccharide and the purified oligosaccharide, this major oligosaccharide appeared to be the repeating unit of the polysaccharide, with minor components resulting from internal hydrolysis of the major oligosaccharide. Gas chromatography results showed that the oligomer was a hexasaccharide, consisting of rhamnose, galactose, and glucose, in the ratio of 2:3:1, respectively. By weight, the purified hexasaccharide was a fourfold-more-potent inhibitor of coaggregation than the native polysaccharide. Resistance to hydrolysis by sulfuric acid alone and susceptibility to hydrolysis by HF suggested that oligosaccharide chains of the polysaccharide are linked by phosphodiester bonds. Studies with a coaggregation-defective mutant of S. sanguis H1 revealed that the cell walls of the mutant contained neither the polysaccharide nor the hexasaccharide repeating unit. The purification of both a polysaccharide and its constituent hexasaccharide repeating unit, which both inhibited coaggregation, and the absence of this polysaccharide or hexasaccharide on a coaggregation-defective mutant strongly suggest that the hexasaccharide derived from the polysaccharide functions as the receptor for the adhesin from C. ochracea ATCC 33596.  相似文献   

4.
Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). 1H NMR spectra of the polysaccharide show that is is partially O-acetylated. Analysis of the 1H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The 1H and 13C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by 1H-detected heteronuclear multiple-quantum correlation (1H[13C]HMQC). The linkage of the component monosaccharides in the polymer, deduced from two-dimensional 1H-detected heteronuclear multiple-bond correlation spectra (1H[13C]HMBC), shows that the repeating unit of the de-O-acetylated polymer is a linear hexasaccharide with no branch points. The complete 1H and 13C assignment of the native polysaccharide was carried out by the same techniques augmented by a 13C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the 1H spectrum pose difficulties. The fully assigned spectra of the native polymer show that each of two different positions is acetylated in one-third of the repeating subunits and that the acetylation is randomly distributed along the polymer. The exact positions of acetylation were assigned by a carbonyl-selective HMBC method that unambiguously defines the positions of O-acetylation. The complete structure of the native polysaccharide in S. oralis ATCC 10557 is [formula: see text] Comparison of this structure with those previously determined for the polysaccharides of strains 34 and J22 suggests that the similar lectin receptor activities of these molecules may depend on internal galactofuranose linked (beta 1----6)- to Gal(beta 1----3)GalNAc(alpha) or GalNAc(beta 1----3)Gal(alpha).  相似文献   

5.
Streptococcus thermophilus EU20 when grown on skimmed milk secretes a high-molecular-weight exopolysaccharide that is composed of glucose, galactose and rhamnose in a molar ratio of 2:3:2. Using chemical techniques and 1D and 2D-NMR spectroscopy (1H and 13C) the polysaccharide has been shown to possess a heptasaccharide repeating unit having the following structure: [chemical structure: see text]. Treatment of the polysaccharide with mild acid (0.5 M TFA, 100 degrees C for 1 h) liberates two oligosaccharides; the components correspond to the repeating unit and a hexasaccharide equivalent to the repeating unit minus the terminal alpha-L-Rhap.  相似文献   

6.
Streptococcus thermophilus strains grown on skimmed milk produced a viscosifying, exocellular, and water-soluble polysaccharide which contains D-glucose, D-galactose, and N-acetyl-D-galactosamine in the ratio of 1:2:1. Methylation analysis identified the glycosidic linkages in the tetrasaccharidic repeating-unit, and Smith degradation and nitrous deamination after N-deacetylation gave the sequence of monosaccharides in the repeating-unit. The anomeric configurations of the sugar residues were determined by oxidation of the peracetylated polysaccharide with chromium trioxide and by 1H- and 13C-n.m.r. spectroscopy. The following structure was assigned to the repeating unit of the polysaccharide,----3)-beta-D-Galp-(1----3)-[alpha-D-Galp-(1----6)]-beta- D- Glcp-(1----3)-alpha-D-GalpNAc-(1----.  相似文献   

7.
We have derived oligosaccharides from the capsular polysaccharide of type III group B Streptococcus by enzymatic hydrolysis of a specific backbone glycosidic bond utilizing an endo-beta-galactosidase from Flavobacterium keratolyticus. Enzymatic digestion of the polysaccharide produced oligosaccharide fragments of one or more pentasaccharide repeating units. On the basis of 13C NMR, 1H NMR, and methylation analyses, it was established that the smallest digestion fragment was alpha-D-NeupNAc-(2----3)-beta-D-Galp-(1----4)-[beta-D-Glcp-(1----6 )]- beta-D-GlcpNAc-(1----3)-beta-D-Gal. The isolation of this oligosaccharide is consistent with the susceptibility of the beta-D-Galp-(1----4)-beta-D-Glcp linkage in the backbone of the type III group B streptococcal polysaccharide and confirms that the polysaccharide is composed of a pentasaccharide repeating unit. High resolution 13C NMR spectroscopic studies indicated that, as in the case of the pentasaccharide, the terminal sialic acid residues of the type III group B streptococcal polysaccharide were linked to O-3 and not to O-6 of its branch beta-D-galactopyranosyl residues as had been previously reported (Jennings, H. J., Rosell, K.-G., and Kasper, D. L. (1980) Can. J. Chem. 58, 112-120). This linkage was confirmed in an independent methylation analysis of the type III group B streptococcal polysaccharide. Thin layer chromatogram binding assay and radioactive antigen binding assays with radiolabeled oligosaccharides demonstrated the single repeating unit pentasaccharide oligosaccharide to be poorly antigenic. Increasing oligosaccharide size to a decasaccharide consisting of two repeating units resulted in an 8-fold increase in antigen binding in the direct radioactive antigen binding assay. The results suggest that a region of the immunodeterminant site critical for antibody binding is located in the backbone of the polysaccharide and involves the beta-D-galactopyranose-(1----4) beta-D-glucopyranose bond.  相似文献   

8.
Virulence of Vibrio vulnificus has been strongly associated with encapsulation and an opaque colony morphology. Capsular polysaccharide was purified from a whole-cell, phosphate-buffered saline-extracted preparation of the opaque, virulent phase of V. vulnificus M06-24 (M06-24/O) by dialysis, centrifugation, enzymatic digestion, and phenol-chloroform extraction. Nuclear magnetic resonance spectroscopic analysis of the purified polysaccharide showed that the polymer was composed of a repeating structure with four sugar residues per repeating subunit: three residues of 2-acetamido-2,6-dideoxyhexopyranose in the alpha-gluco configuration (QuiNAc) and an additional residue of 2-acetamido hexouronate in the alpha-galactopyranose configuration (GalNAcA). The complete carbohydrate structure of the polysaccharide was determined by heteronuclear nuclear magnetic resonance spectroscopy and by high-performance anion-exchange chromatography. The 1H and 13C nuclear magnetic resonance spectra were completely assigned, and vicinal coupling relationships were used to establish the stereochemistry of each sugar residue, its anomeric configuration, and the positions of the glycosidic linkages. The complete structure is: [----3) QuipNAc alpha-(1----3)-GalpNAcA alpha-(1----3)-QuipNAc alpha-(1----]n QuipNAc alpha-(1----4)-increases The polysaccharide was produced by a translucent phase variant of M06-24 (M06-24/T) but not by a translucent, acapsular transposon mutant (CVD752). Antibodies to the polysaccharide were demonstrable in serum from rabbits inoculated with M06-24/O.  相似文献   

9.
The repeating unit of the capsular polysaccharide from Klebsiella type K-34 has been established by methylation, partial hydrolysis, and Smith degradation to consist of a hexasaccharide repeating-unit built up of four l-rhamnose, one d-glucose, and one d-galacturonic acid residues. The anomeric configurations of the linkages was determined by proton and 13C-n.m.r. spectroscopy at each step of the degradation procedures. Further evidence for the configurations of the glycosidic linkages involved the use of proton T1 relaxation-times and oxidation by chromium trioxide. The data allowed assignment of the following structure for the repeating unit:  相似文献   

10.
A convergent synthesis of a hexasaccharide corresponding to the cell-wall polysaccharide of the beta-hemolytic Streptococci Group A is described. The strategy relies on the preparation of a key branched trisaccharide unit alpha-L-Rhap-(1----2)-[beta-D-GlcpNAc-(1----3)]-alpha-L-Rhap which functions both as a glycosyl acceptor and donor. The hexasaccharide is obtained after only three glycosylation reactions. This fully functionalized unit can serve, in turn, as a glycosyl acceptor or donor for the synthesis of higher-order structures. Deprotection gives a hexasaccharide for use as a hapten in immunochemical studies. The characterization of all compounds by high resolution 1H- and 13C-n.m.r. spectroscopy is also described.  相似文献   

11.
The structure of polysaccharide prepared by lysozyme digestion from the cell wall of Propionibacterium acnes strain C7 was examined. The polysaccharide fraction was composed of glucose, galactose, mannose, galactosamine, and diaminomannuronic acid in a molar ratio of 1:1:0.3:1:2. By Smith degradation of the polysaccharide, diaminouronic acid-containing fractions were obtained, and the configuration of diaminouronic acid was identified as 2,3-diacetamido-2,3-dideoxymannuronic acid [Man(NAc)2A] by means of 1H-NMR and 13C-NMR spectroscopic analyses. The results of analyses involving methylation and partial acid hydrolysis led to the conclusion that the polysaccharide has the repeating unit----6)Gal(alpha 1----4)Man(NAc)2A(beta 1----6)Glc(alpha 1----4)Man(NAc)2A (beta 1----3)GalNAc(beta 1--. In addition, a portion of the galactose residues were substituted at C-4 by alpha 1----2 linked mannotriose.  相似文献   

12.
Complete structure of the polysaccharide from Streptococcus sanguis J22   总被引:8,自引:0,他引:8  
The cell wall polysaccharides of certain oral streptococci such as Streptococcus sanguis strains 34 and J22, although immunologically distinct, act as receptors for the fimbrial lectins of Actinomyces viscosus T14V. We report the complete covalent structure of the polysaccharide from S. sanguis J22 which is composed of a heptasaccharide subunit linked by phosphodiester bonds. The repeating subunit, which contains alpha-GalNAc, alpha-rhamnose, beta-rhamnose, beta-glucose, and beta-galactose all in the pyranoside form and beta-galactofuranose, is compared with the previously published structure of the polysaccharide from strain 34. The structure has been determined almost exclusively by high-resolution nuclear magnetic resonance methods. The 1H and 13C NMR spectra of the polysaccharides from both strains 34 and J22 have been completely assigned. The stereochemistry of pyranosides was assigned from JH-H values determined from phase-sensitive COSY spectra, and acetamido sugars were assigned by correlation of the resonances of the amide 1H with the sugar ring protons. The 13C spectra were assigned by 1H-detected multiple-quantum correlation (HMQC) spectra, and the assignments were confirmed by 1H-detected multiple-bond correlation (HMBC) spectra. The positions of the glycosidic linkages were assigned by detection of three-bond 1H-13C correlation across the glycosidic linkage in the HMBC spectra. The positions of the phosphodiester linkages were determined by splittings observed in the 13C resonances due to 31P coupling and also by 1H-detected 31P correlation spectroscopy.  相似文献   

13.
A viscous extracellular polysaccharide produced by Lactobacillus helveticus K16 has been investigated. Sugar and methylation analysis, 1H and 13C NMR spectroscopy revealed that the polysaccharide is composed of a hexasaccharide repeating unit. The sequence of sugar residues was determined by use of two-dimensional nuclear Overhauser effect spectroscopy and heteronuclear multiple bond connectivity experiments. The structure of the repeating unit of the exopolysaccharide from L. helveticus K16 is as follows: carbohydrate sequence [see text].  相似文献   

14.
Structural studies were carried out on a rhamnose-rich polysaccharide isolated from the O-polysaccharide fraction of lipopolysaccharide in Pseudomonas aeruginosa IID 1008 (ATCC 27584) after destruction of the major O-specific chain by alkaline treatment. The isolated polysaccharide contained rhamnose, 3-O-methyl-6-deoxyhexose, glucose, xylose, alanine, galactosamine and phosphorus in a molar ratio of 67:6.9:4.3:2.1:1.1:1.0:4.1. Data from analysis involving Smith degradation, methylation, 1H-NMR spectroscopy and optical rotation measurement showed that the polysaccharide was built up of three moieties, a rhamnan chain composed of about 70 D-rhamnose residues, the core chain and an oligosaccharide chain comprising 3-O-methyl-6-deoxyhexose, xylose, rhamnose and probably glucose. The repeating unit of the rhamnan chain was indicated to have the following structure:----3)D-Rha(alpha 1----3)D-Rha(alpha 1----2)D-Rha(alpha 1----. This structure is identical with that proposed previously for the repeating unit of the side chain of lipopolysaccharide from plant pathogenic bacteria Pseudomonas syringae pv. morsprunorum C28 [Smith, A.R.W., Zamze, S.E., Munro, S.M., Carter, K. J. and Hignett, R.C. (1985) Eur. J. Biochem. 149, 73-78].  相似文献   

15.
The group-specific polysaccharide of the group B Streptococcus was isolated by nitrous acid extraction followed by gel filtration on Sepharose 6B and chromatography on DEAE-Bio-Gel A. It was composed of rhamnose, galactose, N-acetylglucosamine, and glucitol phosphate. Mild periodate oxidation of the polysaccharide resulted in a rapid reduction in molecular weight, indicating that the glucitol was located in the backbone of the polymer. High-resolution 31P NMR showed the presence of a single type of phosphodiester bond in the molecule. Methylation analysis and several specific chemical degradations were done to determine sugar linkages. The basic structure of the group B polysaccharide consists of a backbone of 2-linked rhamnose, 2,4-linked rhamnose, and glucitol phosphate, and side chains of rhamnose(1----3)galactose(1----3)N-acetylglucosamine linked to the 4-position of a rhamnose in the backbone.  相似文献   

16.
The O-specific polysaccharide, obtained on mild acid degradation of lipopolysaccharide of Pseudomonas aeruginosa O13 (Lányi classification), is built up of trisaccharide repeating units involving 2-acetamidino-2,6-dideoxy-D-glucose (N-acetyl-D-quinovosamine, D-QuiNAc), 2-acetamidino-2,6-dideoxy-L-galactose (L-fucosacetamidine, L-FucAm), and a new sialic-acid-like sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-L-galacto-nonuloso n ic acid (Sug), and thus contains simultaneously both acidic and basic functions. Cleavage of the polysaccharide with hydrogen fluoride in methanol revealed the high stability of the glycosidic linkage of the ulosonic acid and afforded methyl glycosides of a disaccharide and a trisaccharide. The structures of the new ulosonic acid and acetamidino group were established by analysing the oligosaccharide fragments by 1H, 13C nuclear magnetic resonance spectrometry, as well as on the basis of their chemical conversions: alkaline hydrolysis of the acetamidino group into acetamido group, reductive deamination with lithium borohydride into the ethylamino group and acetylation with acetic anhydride in pyridine accompanied by intramolecular acylation of the acetamidino function by the ulosonic acid to form a six-membered lactam ring. Identification of the oligosaccharide fragments and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and polysaccharide revealed the following structure of the repeating unit: ----3)D-QuiNAcp(alpha 1----3)Sugp(alpha 2----3)L-FucAmp(alpha 1----.  相似文献   

17.
The Hafnia alvei strain 1211 O-specific polysaccharide is composed of 3-amino-N-(D-3'-hydroxybutyryl)-3,6-dideoxy-D-galactose, N-acetyl-D-galactosamine, N-acetyl-D-glucosamine and D-glucose (1:1:2:2). On the basis of sugar and methylation analyses, Smith degradation, and one- and two-dimensional 1H- and 13C-NMR spectroscopy, the polysaccharide was shown to be an O-acetylated polymer of the repeating hexasaccharide unit, ----2D(4-OAc)Fucp3NAcyl beta 1----6DGlcpNAc alpha 1---- (DGlcp beta 1----3)4DGalpNAc alpha 1----3DGlcpNAc beta 1----2DGlcp beta 1----, where DFucp3NAcyl = 3-amino-N-(D-3'-hydroxybutyryl)-3,6-dideoxy-D- galactopyranose. The O-specific polysaccharide showed some microheterogeneity due to incomplete substitution by terminal glucose.  相似文献   

18.
The structure of the Escherichia coli K100 capsular polysaccharide, cross-reactive with that from type b Haemophilus influenzae, was determined by using a combination of chemical and spectroscopic techniques. The structure of the K100 repeating unit was found to be----3)-beta-D-Ribf-(1----2)-D-ribitol-5-(PO4----. The K100 polysaccharide is thus identical in composition to, but different in linkage from, the H. influenzae type b capsular polysaccharide, which has beta-D-Ribf-(1----1)-D-ribitol linkages.  相似文献   

19.
As part of our ongoing investigations involving lectinmediatedadhesion among oral bacteria, the receptor polysaccharide fromStreptococcus gordonii 38 was isolated and characterized. Carbohydrateanalysis of the hydrolysed S.gordonii 38 polysaccharide by high-performanceanionexchange chromatography with pulsed amperometric detection(HPAEC-PAD) showed galactose (Gal) (2 mol), N-acetylgalactosamine(GalNAc) (1 mol), rhamnose (Rha) (2 mol), glucose (Glc) (1 mol)and galactosamine-6-phosphate (1 mol). Mild acid hydrolysisof the polysaccharide yielded a heptasaccharide repeating unit.The structure of the heptasaccharide repeating unit was determinedby high-resolution NMR spectroscopy which includes various homonuclear(DOF—COSY, TQF-COSY, NOESY and HOHAHA) and heteronuclearexperiments (HMQC), including linkage assignments by 1H-13Clong-range correlation (HMBC). Complete 1H and 13C NMR assignmentsfor the intact polysaccharide yielded the covalent structureof a heptasaccharide repeating unit:  相似文献   

20.
The structure of the repeating unit of the capsular polysaccharide from Klebsiella type 41 has been investigated by methylation analysis of the original and the carboxyl-reduced polymer, uronic acid degradation, Smith degradation, and graded acid hydrolysis. Proton- and 13C-n.m.r. spectroscopy of the original polysaccharide and of the fragments obtained by various methods confirmed some structural features and allowed determination of the anomeric configuration of the glycosidic linkages. This polysaccharide is shown to have the following heptasaccharide repeating-unit:
This is the first polysaccharide antigen K of the Klebsiella series found to have seven sugar residues in its repeating unit, and to contain a galactose residue in its furanose form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号