首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The RNA polymerase associated with RpoS transcribes many genes related to stationary phase and stress survival in Escherichia coli. The DNA sequence of rpoS exhibits a high degree of polymorphism. A C to T transition at position 99 of the rpoS ORF, which results in a premature amber stop codon often found in E. coli strains. The rpoSam mutant expresses a truncated and partially functional RpoS protein. Here, we present new evidence regarding rpoS polymorphism in common laboratory E. coli strains. One out of the six tested strains carries the rpoSam allele, but expressed a full-length RpoS protein owing to the presence of an amber supressor mutation. The rpoSam allele was transferred to a non-suppressor background and tested for RpoS level, stress resistance and for the expression of RpoS and sigma70-dependent genes. Overall, the rpoSam strain displayed an intermediate phenotype regarding stress resistance and the expression of σS-dependent genes when compared to the wild-type rpoS + strain and to the rpoS null mutant. Surprisingly, overexpression of rpoSam had a differential effect on the expression of the σ70-dependent genes phoA and lacZ that, respectively, encode the enzymes alkaline phosphatase and β-galactosidase. The former was enhanced while the latter was inhibited by high levels of RpoSam.  相似文献   

3.
RpoS is a conserved alternative sigma factor that regulates the expression of many stress response genes in Escherichia coli. The RpoS regulon is large but has not yet been completely characterized. In this study, we report the identification of over 100 RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild-type backgrounds. Forty-eight independent gene fusions were identified, including several in well-characterized RpoS-regulated genes, such as osmY, katE, and otsA. Many of the other fusions mapped to genes of unknown function or to genes that were not previously known to be under RpoS control. Based on the homology to other known bacterial genes, some of the RpoS-regulated genes of unknown functions are likely important in nutrient scavenging.  相似文献   

4.
The stationary-phase sigma factor (RpoS) regulates many cellular responses to environmental stress conditions such as heat, acid, and alkali shocks. On the other hand, mutations at the rpoS locus have frequently been detected among pathogenic as well as commensal strains of Escherichia coli. The objective of this study was to perform a functional analysis of the RpoS-mediated stress responses of enterohemorrhagic E. coli strains from food-borne outbreaks. E. coli strains belonging to serotypes O157:H7, O111:H11, and O26:H11 exhibited polymorphisms for two phenotypes widely used to monitor rpoS mutations, heat tolerance and glycogen synthesis, as well as for two others, alkali tolerance and adherence to Caco-2 cells. However, these strains synthesized the oxidative acid resistance system through an rpoS-dependent pathway. During the transition from mildly acidic growth conditions (pH 5.5) to alkaline stress (pH 10.2), cell survival was dependent on rpoS functionality. Some strains were able to overcome negative regulation by RpoS and induced higher β-galactosidase activity without compromising their acid resistance. There were no major differences in the DNA sequences in the rpoS coding regions among the tested strains. The heterogeneity of rpoS-dependent phenotypes observed for stress-related phenotypes was also evident in the Caco-2 cell adherence assay. Wild-type O157:H7 strains with native rpoS were less adherent than rpoS-complemented counterpart strains, suggesting that rpoS functionality is needed. These results show that some pathogenic E. coli strains can maintain their acid tolerance capability while compromising other RpoS-dependent stress responses. Such adaptation processes may have significant impact on a pathogen's survival in food processing environments, as well in the host's stomach and intestine.  相似文献   

5.
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

6.
7.
While the roles of rpoSBb and RpoS-dependent genes have been studied extensively within the mammal, the contribution of the RpoS regulon to the tick-phase of the Borrelia burgdorferi enzootic cycle has not been examined. Herein, we demonstrate that RpoS-dependent gene expression is prerequisite for the transmission of spirochetes by feeding nymphs. RpoS-deficient organisms are confined to the midgut lumen where they transform into an unusual morphotype (round bodies) during the later stages of the blood meal. We show that round body formation is rapidly reversible, and in vitro appears to be attributable, in part, to reduced levels of Coenzyme A disulfide reductase, which among other functions, provides NAD+ for glycolysis. Our data suggest that spirochetes default to an RpoS-independent program for round body formation upon sensing that the energetics for transmission are unfavorable.  相似文献   

8.
9.
10.
DnaK is essential for starvation-induced resistance to heat, oxidation, and reductive division in Escherichia coli. Studies reported here indicate that DnaK is also required for starvation-induced osmotolerance, catalase activity, and the production of the RpoS-controlled Dps (PexB) protein. Because these dnaK mutant phenotypes closely resemble those of rpoS38) mutants, the relationship between DnaK and RpoS was evaluated directly during growth and starvation at 30°C in strains with genetically altered DnaK content. A starvation-specific effect of DnaK on RpoS abundance was observed. During carbon starvation, DnaK deficiency reduced RpoS levels threefold, while DnaK excess increased RpoS levels nearly twofold. Complementation of the dnaK mutation restored starvation-induced RpoS levels to normal. RpoS deficiency had no effect on the cellular concentration of DnaK, revealing an epistatic relationship between DnaK and RpoS. Protein half-life studies conducted at the onset of starvation indicate that DnaK deficiency significantly destabilized RpoS. RpoH (ς32) suppressors of the dnaK mutant with restored levels of RpoS and dnaK rpoS double mutants were used to show that DnaK plays both an independent and an RpoS-dependent role in starvation-induced thermotolerance. The results suggest that DnaK coordinates sigma factor levels in glucose-starved E. coli.  相似文献   

11.
The RpoS sigma factor in proteobacteria regulates genes in stationary phase and in response to stress. Although of conserved function, the RpoS regulon may have different gene composition across species due to high genomic diversity and to known environmental conditions that select for RpoS mutants. In this study, the distribution of RpoS homologs in prokaryotes and the differential dependence of regulon members on RpoS for expression in two γ-proteobacteria (Escherichia coli and Pseudomonas aeruginosa) were examined. Using a maximum-likelihood phylogeny and reciprocal best hits analysis, we show that the RpoS sigma factor is conserved within γ-, β-, and δ-proteobacteria. Annotated RpoS of Borrelia and the enteric RpoS are postulated to have separate evolutionary origins. To determine the conservation of RpoS-dependent gene expression across species, reciprocal best hits analysis was used to identify orthologs of the E. coli RpoS regulon in the RpoS regulon of P. aeruginosa. Of the 186 RpoS-dependent genes of E. coli, 50 proteins have an ortholog within the P. aeruginosa genome. Twelve genes of the 50 orthologs are RpoS-dependent in both species, and at least four genes are regulated by RpoS in other γ-proteobacteria. Despite RpoS conservation in γ-, β-, and δ-proteobacteria, RpoS regulon composition is subject to modification between species. Environmental selection for RpoS mutants likely contributes to the evolutionary divergence and specialization of the RpoS regulon within different bacterial genomes.  相似文献   

12.
Cellular robustness is an important trait for industrial microbes, because the microbial strains are exposed to a multitude of different stresses during industrial processes, such as fermentation. Thus, engineering robustness in an organism in order to push the strains toward maximizing yield has become a significant topic of research. We introduced the deinococcal response regulator DR1558 into Escherichia coli (strain Ec-1558), thereby conferring tolerance to hydrogen peroxide (H2O2). The reactive oxygen species (ROS) level in strain Ec-1558 was reduced due to the increased KatE catalase activity. Among four regulators of the oxidative-stress response, OxyR, RpoS, SoxS, and Fur, we found that the expression of rpoS increased in Ec-1558, and we confirmed this increase by Western blot analysis. Electrophoretic mobility shift assays showed that DR1558 bound to the rpoS promoter. Because the alternative sigma factor RpoS regulates various stress resistance-related genes, we performed stress survival analysis using an rpoS mutant strain. Ec-1558 was able to tolerate a low pH, a high temperature, and high NaCl concentrations in addition to H2O2, and the multistress tolerance phenotype disappeared in the absence of rpoS. Microarray analysis clearly showed that a variety of stress-responsive genes that are directly or indirectly controlled by RpoS were upregulated in strain Ec-1558. These findings, taken together, indicate that the multistress tolerance conferred by DR1558 is likely routed through RpoS. In the present study, we propose a novel strategy of employing an exogenous response regulator from polyextremophiles for strain improvement.  相似文献   

13.
RpoS, an alternative sigma factor produced by many gram-negative bacteria, primarily controls genes that are expressed in stationary phase in response to nutrient deprivation. To test the idea that induction of RpoS in the exponential phase, when RpoS is not normally expressed, increases RpoS-dependent gene expression, we constructed a plasmid carrying the rpoS gene under the control of an IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible T7lac promoter. Northern and Western analyses revealed that levels of RpoS mRNA and protein, respectively, increased in response to the inducer IPTG. Assays of changes in RpoS-dependent functions (catalase activity and glycogen accumulation), confirmed that induced RpoS was functional in exponential phase and was sufficient for the expression of RpoS-dependent functions. Controlled expression of RpoS and RpoS-dependent genes by plasmid-encoded rpoS may thus offer a useful tool for the study of RpoS-dependent gene expression.  相似文献   

14.
15.
16.
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS+/gadE+ cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE+ and rpoS+gadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.  相似文献   

17.
18.
19.
We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.  相似文献   

20.
The first common enzyme of isoleucine and valine biosynthesis, acetolactate synthase (ALS), is specifically inhibited by the herbicide sulfometuron methyl (SM). To further understand the physiological consequences of flux alterations at this point in metabolism, Escherichia coli genes whose expression was induced by partial inhibition of ALS were sought. Plasmid-based fusions of random E. coli DNA fragments to Photorhabdus luminescens luxCDABE were screened for bioluminescent increases in actively growing liquid cultures slowed 25% by the addition of SM. From more than 8,000 transformants, 12 unique SM-inducible promoter-lux fusions were identified. The lux reporter genes were joined to seven uncharacterized open reading frames, f253a, f415, frvX, o513, o521, yciG, and yohF, and five known genes, inaA, ldcC, osmY, poxB, and sohA. Inactivation of the rpoS-encoded sigma factor, ςS, reduced basal expression levels of six of these fusions 10- to 200-fold. These six genes defined four new members of the ςS regulon, f253a, ldcC, yciG, and yohF, and included two known members, osmY and poxB. Furthermore, the weak acid salicylate, which causes cytoplasmic acidification, also induced increased bioluminescence from seven SM-inducible promoter-lux fusion-containing strains, namely, those with fusions of the ςS-controlled genes and inaA. The pattern of gene expression changes suggested that restricted ALS activity may result in intracellular acidification and induction of the ςS-dependent stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号