首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
M Tanaka  R Ikebe  M Matsuura    M Ikebe 《The EMBO journal》1995,14(12):2839-2846
It has been hypothesized that basic residues in the autoinhibitory region of myosin light chain (MLC) kinase, which resemble the substrate sequence, interact with the catalytic core via charge interaction and thus inhibit the kinase activity (pseudosubstrate inhibitory hypothesis). In the present study, we produced seven MLC kinase mutants in which the residues in the autoinhibitory region are deleted to various extents, and determined the residues crucial for the autoinhibition of the kinase activity. The activities of MT799 (1-799) and MT796 (1-796) were completely inhibited, whereas MT793 (1-793), MT791 (1-791), MT787 (1-787) and MT783 (1-783) were constitutively active. The tryptic proteolysis of MT799 and MT796 activated the kinase activity, presumably due to the removal of the residues essential for autoinhibition. The mutants which showed the constitutively active kinase activity were not further activated by tryptic proteolysis, suggesting that the residues crucial for autoinhibition were already deleted. On the other hand, MT795 (1-795) was partially constitutively active (33% of maximum activity) and the tryptic proteolysis further activated the enzyme activity, suggesting that MT795 loses part of the residues essential for autoinhibition. The substitution of the residues Tyr794-Met795 but not Lys793 of untruncated MLC kinase significantly increased the Ca2+/calmodulin-independent kinase activity. These results clearly show that the region Tyr794-Met795-Ala796 is critical for autoinhibition. This study shows that the pseudosubstrate sequence is not critical for the autoinhibition mechanism of MLC kinase.  相似文献   

2.
M Ikebe  S Reardon  F S Fay 《FEBS letters》1992,312(2-3):245-248
Myosin light chain kinase (MLCK) contains the autoinhibitor sequence right next to the N-terminus side of the calmodulin binding region. In this paper, the structural requirement of the inhibition of MLCK activity was studied using synthetic peptide analogs. Peptides Ala-783-Lys-799 and Ala-783-Arg-798 inhibited calmodulin independent MLCK at the same potency as the peptide Ala-783-Gly-804. Deletion of Arg-797-Lys-799 or substitution of these residues to Ala markedly increased the Ki while the substitution of Lys-792 and Lys-793 to Ala and the deletion of Lys-784-Lys-785 did not affect the inhibitory activity of the peptides. The results suggest that Arg-797-Arg-798 are especially important for the inhibitory activity among other basic residues in the autoinhibitory region.  相似文献   

3.
The structure of the chicken smooth muscle myosin light chain kinase pseudosubstrate sequence MLCK(774–807)amide was studied using two-dimensional proton NMR spectroscopy. Resonance assignments were made with the aid of totally correlated and nuclear Overhauser effect spectroscopy. A distance geometry algorithm was used to process the body of NMR distance and angle data and the resulting family of structures was further refined using dynamic simulated annealing. The major structural features determined include two helical segments extending from Asp-777 to Lys-785 and from Arg-790/Met-791 to Trp-800 connected by a turn region from Leu-786 to Asp-789 enabling the helices to interact in solution. The C-terminal helix incorporates the bulk of the pseudosubstrate recognition site which is partially overlapped by the calmodulin binding site while the N-terminal helix forms the bulk of the connecting peptide. The demonstrated turn between the helices may assist in enabling the autoregulatory or pseudosubstrate recognition sequence to be rotated out of the active site of the catalytic core following calmodulin binding.  相似文献   

4.
N Yokoyama  W T Miller 《FEBS letters》1999,456(3):403-408
To study the role of the catalytic domain in v-Src substrate specificity, we engineered three site-directed mutants (Leu-472 to Tyr or Trp and Thr-429 to Met). The mutant forms of Src were expressed in Sf9 cells and purified. We analyzed the substrate specificities of wild-type v-Src and the mutants using two series of peptides that varied at residues C-terminal to tyrosine. The peptides contained either the YMTM motif found in insulin receptor substrate-1 (IRS-1) or the YGEF motif identified from peptide library experiments to be the optimal sequence for Src. Mutations at positions Leu-472 or Thr-429 caused changes in substrate specificity at positions P+1 and P+3 (i.e. one or three residues C-terminal to tyrosine). This was particularly evident in the case of the L-472W mutant, which had pronounced alterations in its preferences at the P+1 position. The results suggest that residue Leu-472 plays a role in P+1 substrate recognition by Src. We discuss the results in the light of recent work on the roles of the SH2, SH3 and catalytic domains of Src in substrate specificity.  相似文献   

5.
The C-terminal domain of Bacillus sp. strain TS-23 -amylase (BLA) has been known to be involved in the raw starch-binding activity of the enzyme. Sequence comparison revealed that Thr-527, Trp-545, Trp-561, Lys-576, and Trp-588 in this domain are highly conserved in the aligned enzymes. To understand structure-function relationships in the starch-binding domain of BLA, site-directed mutagenesis was conducted to replace these residues with leucine or isoleucine. The overexpressed enzymes have been purified by nickel-chelate chromatography, and the molecular mass of the purified proteins was approximately 64.5 kDa. Starch-binding assay showed that the binding activities of the single-mutated enzymes were significantly reduced, while the combinational mutations did not lead to a complete loss of the activity.  相似文献   

6.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

7.
Sea urchin fibropellins are epidermal growth factor homologues that harbor a C-terminal domain, similar in sequence to hen egg-white avidin and bacterial streptavidin. The fibropellin sequence was used as a conceptual template for mutation of designated conserved tryptophan residues in the biotin-binding sites of the tetrameric proteins, avidin and streptavidin. Three different mutations of avidin, Trp-110-Lys, Trp-70-Arg and the double mutant, were expressed in a baculovirus-infected insect cell system. A mutant of streptavidin, Trp-120-Lys, was similarly expressed. The homologous tryptophan to lysine (W-->K) mutations of avidin and streptavidin were both capable of binding biotin and biotinylated material. Their affinity for the vitamin was, however, significantly reduced: from K(d) approximately 10(-15) M of the wild-type tetramer down to K(d) approximately 10(-8) M for both W-->K mutants. In fact, their binding to immobilized biotin matrices could be reversed by the presence of free biotin. The Trp-70-Arg mutant of avidin bound biotin very poorly and the double mutant (which emulates the fibropellin domain) failed to bind biotin at all. Using a gel filtration fast-protein liquid chromatography assay, both W-->K mutants were found to form stable dimers in solution. These findings may indicate that mimicry in the nature of the avidin sequence and fold by the fibropellins is not designed to generate biotin-binding, but may serve to secure an appropriate structure for facilitating dimerization.  相似文献   

8.
A series of wild-type and mutant raf genes was transfected into NIH 3T3 cells and analyzed for transforming activity. Full-length wild-type c-raf did not show transforming activity. Two types of mutations resulted in oncogenic activity similar to that of v-raf: truncation of the amino-terminal half of the protein and fusion of the full-length molecule to gag sequences. A lower level of activation was observed for a mutant with a tetrapeptide insertion mapping to conserved region 2 (CR2), a serine- and threonine-rich domain located 100 residues amino-terminal of the kinase domain. To determine essential structural features of the transforming region of raf, we analyzed point and deletion mutants of v-raf. Substitutions of Lys-56 modulated the transforming activity, whereas mutation of Lys-53, a putative ATP binding residue, abolished it. Deletion analysis established that the minimal transforming sequence coincided precisely with CR3, the conserved Raf kinase domain. Thus, oncogenic activation of the Raf kinase can be achieved by removal of CR1 and CR2 or by steric distortion and requires retention of an active kinase domain. These findings are consistent with a protein structure model for the nonstimulated enzyme in which the active site is buried within the protein.  相似文献   

9.
A short sequence motif rich in glycine residues, Gly-X-X-X-X-Gly-Lys-Thr/Ser, has been found in many nucleotide-binding proteins including the beta subunit of Escherichia coli H(+)-ATPase (Gly-Gly-Ala-Gly-Val-Gly-Lys-Thr, residues 149-156). The following mutations were introduced in this region of the cloned E. coli unc operon carried by a plasmid pBWU1: Ala-151----Pro or Val; insertion of a Gly residue between Lys-155 and Thr-156; and replacement of the region by the corresponding sequence of adenylate kinase (Gly-Gly-Pro-Gly-Ser-Gly-Lys-Gly-Thr) or p21 ras protein (ras) (Gly-Ala-Gly-Gly-Val-Gly-Lys-Ser). All F0F1 subunits were synthesized in the deletion strain of the unc operon-dependent on pBWU1 with mutations, and essentially the same amounts of H(+)-ATPase with these mutant beta subunits were found in membranes. The adenylate kinase and Gly insertion mutants showed no oxidative phosphorylation or ATPase activity, whereas the Pro-151 mutants had higher ATPase activity than the wild-type, and the Val-151 and ras mutants had significant activity. It is striking that the enzyme with the ras mutation (differing in three amino acids from the beta sequence) had about half the membrane ATPase activity of the wild-type. These results together with the simulated three-dimensional structures of the wild-type and mutant sequences suggest that in mutant beta subunits with no ATPase activity projection of Thr-156 residues was opposite to that in the wild-type, and that the size and direction of projection of residue 151 are important for the enzyme activity.  相似文献   

10.
The apo 1.3S subunit of transcarboxylase contains the sequence Ala-87-Met-88-Lys-89-Met-90, and it is Lys-89 that is biotinated. This sequence is highly conserved in all the biotin enzymes that have been sequenced (with the exception of acetyl-CoA carboxylase from chicken liver, which has Val in place of Ala). The role of Met-88 and Met-90 in specifying Lys-89 for biotination by synthetase was examined by site-directed mutagenesis. Genes of the 1.3S subunit coding for Thr-88, Leu-88, or Leu-90 were generated by oligonucleotide-directed in vitro mutagenesis and expressed in Escherichia coli. The mutated apo 1.3S subunits were isolated and the biotination by homogeneous synthetase from Propionibacterium shermanii was compared with that of the apo wild-type subunit. The Vmax for the apo mutants was the same as that for the apo wild type, but when Leu was substituted for Met-88 or Met-90, the Km for the mutant was lower than that of the wild-type or mutant Thr-88. The activity of the synthetase of E. coli was determined by an in vivo assay. During the early log phase of growth, a smaller portion of mutants Thr-88 and Leu-90 was biotinated than with the wild-type or mutant Leu-88. When the cultures progressed to stationary phase, mutants and the wild type were biotinated to the same extent. The overall results show that Met-88 and Met-90 are not required for biotination of the apo 1.3S subunit by the synthetases.  相似文献   

11.
12.
The requirement of basic residues as substrate specificity determinants for the chicken gizzard myosin light chain kinase has been studied using synthetic peptide analogs of the local phosphorylation site sequence in the myosin light chains, Lys-Lys-Arg13-Pro-Gln-Arg16-Ala-Thr-Ser19-Asn-Val-Phe- Ala. The basic residue, Arg-16, was found to have a strong influence on the kinetics of phosphorylation similar to that reported previously for the three adjacent residues, Lys-11, Lys-12, and Lys-13 (Kemp, B. E., Pearson, R. B., and House, C. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7471-7475). The location of Arg-16 in relation to Ser-19 as well as the distance between Arg-13 and Arg-16 had a profound effect on both the kinetics and the site specificity of phosphorylation. Placement of Arg-16 at position 15 resulted in a complete switch in phosphorylation site specificity from Ser-19 to Thr-18. Increasing the number of alanine residues between Arg-13 and Arg-16 in the model peptide, Lys-Lys-Arg-(Ala)n-Arg-Ala-Thr-Ser-Asn-Val-Phe-Ala, also influenced the kinetics and site specificity of peptide phosphorylation. With two or three alanines (n = 2 or 3), the apparent Km was 7.5 and 10 microM, respectively, and 97% of the phosphate was esterified to Ser-19. Increasing or decreasing the number of alanines (n = O to n = 4) was accompanied by an increase in the apparent Km and phosphorylation of both Thr-18 and Ser-19. These results support the concept that both the presence and location of basic residues play an essential role in the substrate specificity of the smooth muscle myosin light chain kinase.  相似文献   

13.
The catalytic alpha subunit of casein kinase II contains the 11 conserved domains characteristic of all protein kinases. Domain II and VII are involved in nucleotide binding and phosphotransfer. Two residues of the alpha subunit, Val-66 (in domain II) and Trp-176 (in domain VII), were changed to Ala-66 and Phe-176, the residues present in more than 95% of the identified protein kinase sequences. These changes altered the selectivity of the alpha subunit for ATP and GTP. The Ala-66 mutant showed an increase in the Km value for GTP from 45 to 71 microM, while the Km value for ATP decreased from 13 to 9 microM. The Km value for ATP with the Phe-176 mutant showed a decrease from 13 to 7 microM. A double mutant of Ala-66/Phe-176 showed the combined effects, with a Km of 6 microM for ATP and 70 microM for GTP. Alteration of Trp-176 to Lys-176, an amino acid which is not present in the corresponding position of any known protein kinase, resulted in a lack of phosphotransferase activity. The mutations, Val-66 to Ala-66 and Trp-176 to Phe-176, also altered the interaction of the alpha subunit with the regulatory beta subunit. In contrast to the wild-type alpha subunit, which was stimulated 4-fold by addition of the beta subunit, the Ala-66 and Ala-66/Phe-176 mutants were not stimulated by the beta subunit, while the Phe-176 mutant was stimulated only 2.5-fold. All of the reconstituted holoenzymes were similar in molecular weight to the native holoenzyme. The stimulation of the phosphotransferase activity toward beta-casein B by spermine and polylysine, which is mediated by the beta subunit, was similar for holoenzymes reconstituted with either wild-type or mutant alpha subunits. Therefore, binding of the beta subunit appears to alter the active site of the alpha subunit directly or indirectly by inducing a conformational change. Ala-66 and Phe-176 mutations appear to change the structure of the alpha subunit sufficiently so that interaction of the subunits is altered and the stimulatory effect of the beta subunit is reduced or eliminated.  相似文献   

14.
In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture supernatants, i.e. a specific activity greater than 2000 mumol/min mg of protein at 30 degrees C and pH 8, a KmATP of 0.6 mM and a Kd for its activator, CaM, of 0.2 nM. Proteolysis with trypsin in the presence of CaM converted the recombinant protein to a 43 kd protein with no loss of activity; the latter corresponds to the secreted form of B.pertussis adenylate cyclase. Site-directed mutagenesis of residue Trp-242 in the recombinant protein yielded mutants expressing full catalytic activity but having altered affinity for CaM. Thus, substitution of an aspartic acid residue for Trp-242 reduced the affinity of adenylate cyclase for CaM greater than 1000-fold. Substitution of a Gln residue for Lys-58 or Lys-65 yielded mutants with a drastically reduced catalytic activity (approximately 0.1% of that of wild-type protein) but with little alteration of CaM-binding. These results substantiated, at the molecular level, our previous genetic and biochemical studies according to which the N-terminal tryptic fragment of secreted B.pertussis adenylate cyclase (residues 1-235/237) harbours the catalytic site, whereas the C-terminal tryptic fragment (residues 235/237-399) corresponds to the main CaM-binding domain of the enzyme.  相似文献   

15.
The editing domain of valyl-tRNA synthetase (ValRS) is known to deacylate, or edit, misformed Thr-tRNA(Val) (post-transfer editing). Here, we determined the 1.7-Angstroms resolution crystal structure of the Thermus thermophilus ValRS editing domain. A comparison of the structure with the previously reported tRNA complex structure revealed conformational changes of the editing domain upon accommodation of the terminal A76; the "GTG loop" moves to expand the pocket, and the side chain of Phe-264 on the GTG loop rotates to interact with the A76 adenine ring. If these conformational changes did not occur, then C75 and A76 of the tRNA would clash with Phe-264. To elucidate the mechanism of the threonine side-chain recognition, we determined the crystal structure of the editing domain bound with [N-(L-threonyl)-sulfamoyl]adenosine at 1.7-Angstroms resolution. The gamma-OH of the threonyl moiety is recognized by the Lys-270, Thr-272, and Asp-279 side chains, which may reject the cognate valyl moiety. Accordingly, ValRS mutants with an Ala substitution for Lys-270 or Asp-279 synthesized significant amounts of Thr-tRNA(Val). The misproduced Thr-tRNA(Val) was hydrolyzed efficiently by the wild-type ValRS, but this post-transfer editing activity was drastically impaired by the Ala substitutions for Lys-270 and Asp-279 and was also decreased by those for Arg-216, Phe-264, and Thr-272. These results indicate that the threonyl moiety and A76 of Thr-tRNA(Val) are recognized by the Lys-270, Thr-272, and Asp-279 side chains and by the Phe-264 side chain, respectively, of the ValRS editing domain.  相似文献   

16.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

17.
The dextranase gene, dex, was identified in Streptococcus criceti strain E49 by degenerate PCR and sequenced completely by the gene-walking method. A sequence of 3,960 nucleotides was determined. The dex gene encodes a 1,200-amino acid protein, which has a calculated molecular mass of 128,129.91 and pI of 4.15 and is predicted to be a cell-surface protein. The deduced amino acid sequence of dex showed homology to S. downei dextranase (63.9% identity). Phylogenetic analysis revealed the similarity of the deduced amino acid sequence of dextranases in S. criceti, S. sobrinus, and S. downei. A recombinant form of the protein with six histidine residues tagged in the C-terminus was partially purified and showed dextranase activity on blue-dextran sodium dodecyl sulfate-polyacrylamide gel electrophoresis (BD-SDSPAGE) followed by renaturation. We also detected dextranase activity in S. criceti cell extracts and culture supernatant by renatured BD-SDS-PAGE, whereas no dextranase activity of the cells was observed on blue-dextran brain heart infusion (BD-BHI) agar plates. Furthermore, PCR-based mutations of dextranase indicated that a deletion mutant of the C-terminal region could hydrolyze blue dextrans and that the D453E mutation, W793L mutation, and double mutations (W793L and deletion of the C-terminal region) resulted in a loss of dextranase activity. These findings suggest that Asp-453 and Trp-793 residues of S. criceti dextranase are critical to the enzyme's activity.  相似文献   

18.
In order to prepare a completely light-stable rhodopsin, we have synthesized an analog, II, of 11-cis retinal in which isomerization at the C11-C12 cis-double bond is blocked by formation of a cyclohexene ring from the C10 to C13-methyl. We used this analog to generate a rhodopsin-like pigment from opsin expressed in COS-1 cells and opsin from rod outer segments (Bhattacharya, S., Ridge, K.D., Knox, B.E., and Khorana, H. G. (1992) J. Biol. Chem. 267, 6763-6769). The pigment (lambda max, 512 nm) formed from opsin and analog II (rhodospin-II) showed ground state properties very similar to those of rhodopsin, but was not entirely stable to light. In the present work, 12 opsin mutants (Ala-117----Phe, Glu-122----Gln(Ala, Asp), Trp-126----Phe(Leu, Ala), Trp-265----Ala(Tyr, Phe), Tyr-268----Phe, and Ala-292----Asp), where the mutations were presumed to be in the retinal binding pocket, were reconstituted with analog II. While all mutants formed rhodopsin-like pigments with II, blue-shifted (12-30 nm) chromophores were obtained with Ala-117----Phe, Glu-122----Gln(Ala), Trp-126----Leu(Ala), and Trp-265----Ala(Tyr, Phe) opsins. The extent of chromophore formation was markedly reduced in the mutants Ala-117----Phe and Trp-126----Ala. Upon illumination, the reconstituted pigments showed varying degrees of light sensitivity; the mutants Trp-126----Phe(Leu) showed light sensitivity similar to wild-type. Continuous illumination of the mutants Glu-122----Asp, Trp-265----Ala, Tyr-268----Phe, and Ala-292----Asp resulted in hydrolysis of the retinyl Schiff base. Markedly reduced light sensitivity was observed with the mutant Trp-265----Tyr, while the mutant Trp-265----Phe was light-insensitive. Consistent with this result, the mutant Trp-265----Phe showed no detectable light-dependent activation of transducin or phosphorylation by rhodopsin kinase.  相似文献   

19.
The cDNAs encoding the alpha and beta subunits of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) were ligated into the bacterial expression vector pET and expressed in Escherichia coli. The bacterially expressed alpha and beta subunits exhibited Ca2+/calmodulin-dependent activity and were easily purified to apparent homogeneity from cell extracts. To determine the minimum size required for catalytic activity and the properties of the calmodulin-binding domain, mutated CaM kinase II cDNAs were expressed in E. coli and the enzymatic property of expressed proteins was examined. The replacement of Thr-286 of the alpha subunit with the negatively charged amino acid Asp or that of Arg-283 with the neutral amino acid Gly induced the partially Ca2+ independent activity. The mutant enzymes alpha-I(delta 283-478) and alpha-II(delta 359-478), which truncated the C-terminal region of the alpha subunit, exhibited CaM kinase II activity and the activities of alpha-I(delta 283-478) and alpha-II(delta 359-478) were completely independent of and partially dependent on Ca2+ and calmodulin, respectively. However, the truncated protein alpha(delta 250-478), which was only 33 amino acids shorter than the alpha-I(delta 283-478) protein had no enzymatic activity, indicating that alpha-I(delta 283-478) was close to the minimum size of the active form. The mutant enzyme alpha(delta 291-315), which lacked the calmodulin-binding domain exhibited Ca2+ independent activity. The molecular mass was, however, smaller than that expected from the amino acid sequence. The mutant enzyme alpha(delta 304-315), which lacked the C-terminal half of the calmodulin-binding domain of the alpha subunit, however, exhibited Ca(2+)-independent activity without a reduction in molecular size, indicating that residues 304-315 of the alpha subunit constituted the core calmodulin-binding domain.  相似文献   

20.
We mutagenized a cloned fragment of polyoma DNA encoding portions of the middle size (MT) and large T antigens. We regenerated infectious viral genomes containing the mutagenized DNA and tested their transforming ability at 32 and 39 degrees C. We isolated three nontransforming mutants and two mutants which were cold sensitive for the maintenance of cell transformation. The nontransforming mutants contained amber termination codons in the reading frame for the MT antigen. They synthesized truncated MT antigens which lacked MT-associated protein kinase activity. The cold-sensitive mutants synthesized MT antigens indistinguishable from wild type with regard to size, stability at 32 and 39 degrees C, intracellular location, and associated protein kinase activity. One of the mutants was shown by nucleotide sequence analysis to contain a single amino acid change in the MT antigen, located two residues upstream from the C-terminal hydrophobic region, and no changes in the large T antigen. The other mutant contained two amino acid changes in the MT antigen and two amino acid changes in the large T antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号