首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of the homeobox gene Uncx4.1 in the somite is restricted to the caudal half of the newly formed somite and sclerotome. Here we show that mice with a targeted mutation of the Uncx4.1 gene exhibit defects in the axial skeleton and ribs. In the absence of Uncx4.1, pedicles of the neural arches and proximal ribs are not formed. In addition, dorsal root ganglia are disorganized. Histological and marker analysis revealed that Uncx4.1 is not necessary for somite segmentation. It is required to maintain the condensation of the caudal half-sclerotome, from which the missing skeletal elements are derived. The loss of proximal ribs in Pax1/Pax9 double mutants and the data presented here argue for a role of Uncx4.1 upstream of Pax9 in the caudolateral sclerotome. Our results further indicate that Uncx4.1 may be involved in the differential cell adhesion properties of the somite.  相似文献   

2.
3.
Neural crest cells migrate segmentally through the rostral half of each trunk somite due to inhibitory influences of ephrins and other molecules present in the caudal-half of somites. To examine the potential role of Notch/Delta signaling in establishing the segmental distribution of ephrins, we examined neural crest migration and ephrin expression in Delta-1 mutant mice. Using Sox-10 as a marker, we noted that neural crest cells moved through both rostral and caudal halves of the somites in mutants, consistent with the finding that ephrinB2 levels are significantly reduced in the caudal-half somites. Later, mutant embryos had aberrantly fused and/or reduced dorsal root and sympathetic ganglia, with a marked diminution in peripheral glia. These results show that Delta-1 is essential for proper migration and differentiation of neural crest cells. Interestingly, absence of Delta-1 leads to diminution of both neurons and glia in peripheral ganglia, suggesting a general depletion of the ganglion precursor pool in mutant mice.  相似文献   

4.
The segmental pattern of peripheral ganglia in higher vertebrates is generated by interactions between neural crest and somite cells. Each mesodermal somite is subdivided into at least two distinct domains represented by its rostral and caudal halves. Most migratory pathways taken by neural crest cells in trunk regions of the axis, as well as the outgrowth of motoneuron fibers are restricted to the rostral domain of each somite. Experimental modification of the somites, achieved by constructing a mesoderm composed of multiple rostral half-somites, results in the formation of continuous and unsegmented nerves, dorsal root ganglia (DRG) and sympathetic ganglia (SG). In contrast, both neurites and crest cells are absent from a mesoderm composed of multiple-caudal half somites. However, the mechanisms responsible for gangliogenesis within the rostral half of the somite, appear to be different for DRG and SG. Vertebral development from the somites is also segmental. In implants of either multiple rostral or caudal somite-halves, the grafted mesoderm dissociates normally into sclerotome and dermomyotome. However, the morphogenetic capabilities of each somitic half differ. The lateral vertebral arch is continuous in the presence of caudal half-somite grafts and is virtually absent in rostral half-somite implants. Therefore, the rostrocaudal subdivision of the sclerotome determines the segmental pattern of neural development and is also important for the proper metameric development of the vertebrae.  相似文献   

5.
6.
7.
Trunk neural crest cells and motor axons move in a segmental fashion through the rostral (anterior) half of each somitic sclerotome, avoiding the caudal (posterior) half. This metameric migration pattern is thought to be caused by molecular differences between the rostral and caudal portions of the somite. Here, we describe the distribution of T-cadherin (truncated-cadherin) during trunk neural crest cell migration. T-cadherin, a novel member of the cadherin family of cell adhesion molecules was selectively expressed in the caudal half of each sclerotome at all times examined. T-cadherin immunostaining appeared graded along the rostrocaudal axis, with increasing levels of reactivity in the caudal halves of progressively more mature (rostral) somites. The earliest T-cadherin expression was detected in a small population of cells in the caudal portion of the somite three segments rostral to last-formed somite. This initial T-cadherin expression was observed concomitant with the invasion of the first neural crest cells into the rostral portion of the same somite in stage 16 embryos. When neural crest cells were ablated surgically prior to their emigration from the neural tube, the pattern of T-cadherin immunoreactivity was unchanged compared to unoperated embryos, suggesting that the metameric T-cadherin distribution occurs independent of neural crest cell signals. This expression pattern is consistent with the possibility that T-cadherin plays a role in influencing the pattern of neural crest cell migration and in maintaining somite polarity.  相似文献   

8.
9.
The segmental body plan of vertebrates arises from the metameric organization of the paraxial mesoderm into somites. Each mesodermal somite is subdivided into at least two distinct domains: rostral and caudal. The segmental pattern of dorsal root ganglia, sympathetic ganglia and nerves is imposed by differential properties of either somitic domain. In the present work, we have extended these studies by investigating the contribution of rostral or caudal-half somites to vertebral development using grafts of multiple somite halves. In both rostral and caudal somitic implants, the grafted mesoderm dissociates normally into sclerotome and dermomyotome, and the sclerotome further develops into vertebrae. However, the morphogenetic capabilities of each somitic half differ. The pedicle of the vertebral arch is almost continuous in caudal half-somite grafts and is virtually absent in rostral half-somite implants. Similarly, the intervertebral disk is present in rostral half-somite chimeras, and much reduced or virtually absent in caudal somite chimeras. Thus, only the caudal half cells are committed to give rise to the vertebral pedicle, and only the rostral half cells are committed to give rise to the fibrocartilage of the intervertebral disk. Each vertebra is therefore composed of a pedicle-containing area, apparently formed by the caudal half-somite, followed by a pedicle-free zone, the intervertebral foramen, derived from the rostral somite. These data directly support the hypothesis of resegmentation, in which vertebrae arise by fusion of the caudal and rostral halves of two consecutive somites.  相似文献   

10.
11.
Segmentation consists on the progressive formation of repetitive embryonic structures, named somites, which are formed from the most rostral part of the presomitic mesoderm. Somites are subdivided into anterior and posterior compartments and several genes are differentially expressed in either compartment. This has provided evidence for the importance of establishing the anterior-posterior polarity within each somite, which is critical for the correct segmented pattern of the adult vertebrate body. Although all somites appear morphologically similar, fate map studies have shown that the first 4 somites do not give rise to segmented structures, in contrast to more posterior ones. Moreover, in several somitogenesis-related mutants the anterior somites are not affected while posterior somites present clear defects or do not form at all. Altogether these data suggest relevant differences between rostral and caudal somites. In order to check for molecular differences between anterior and posterior somites, we have performed a detailed expression pattern analysis of several Notch signalling related genes. For the first time, we show that the somitic expression pattern profile is not the same along the anterior-posterior axis and that the differences are not observed always at the same somite level.  相似文献   

12.
To determine whether resegmentation of somites forms the axial skeleton, we traced the development of the rostral and the caudal half of a somite during skeletogenesis in chick-quail chimeras by replacing the rostral or caudal half of a newly formed chick somite with that of a quail somite. The rostral half-somite transplant formed the caudal half of the vertebral body, the entire spinous process and the distal rib, while the caudal half-somite transplant formed the rostral half of vertebral body, the rostral half of spinous process, the vertebral arch, the transverse process and the entire rib. These findings confirm the resegmentation theory except the spinous process and the distal rib.  相似文献   

13.

Background  

Expression of the mouse Delta-like 1 (Dll1) gene in the presomitic mesoderm and in the caudal halves of somites of the developing embryo is required for the formation of epithelial somites and for the maintenance of caudal somite identity, respectively. The rostro-caudal polarity of somites is initiated early on within the presomitic mesoderm in nascent somites. Here we have investigated the requirement of restricted Dll1 expression in caudal somite compartments for the maintenance of rostro-caudal somite polarity and the morphogenesis of the axial skeleton. We did this by overexpressing a functional copy of the Dll1 gene throughout the paraxial mesoderm, in particular in anterior somite compartments, during somitogenesis in transgenic mice.  相似文献   

14.
Groups of three consecutive somites from the first to the eleventh somite from chick embryos of stages 17-18 were grown in tissue culture for seven days. Sympathetic neurons, identified both by phase contrast microscopy and FIF histochemistry, occurred only in cultures which included the sixth, or more caudal, somites. If it is assumed that sympathetic precursor cells (neural crest cells) have not undergone a caudal shift prior to stages 17-18, and taking into account the loss of one or two rostral somites, then the anterior sympathetic ganglia are derived from neural crest caudal to the sixth or seventh somite. Thus, the vagal zone (level with somites 1-7) contributes little to the sympathetic nervous system.  相似文献   

15.
Peanut agglutinin (PNA) receptors are expressed in the caudal halves of sclerotomes in chick embryos after 3 days of incubation (stages 19–20 of Hamburger & Hamilton). The neural crest cells forming dorsal root ganglia (DRG) and motor nerves appear to avoid PNA positive regions and concentrate into rostral halves of sclerotomes. To investigate the role of PNA receptors in gangliogenesis and nerve growth, we examined PNA binding ability in quail sclerotomes and in chick-quail chimeric embryos made by transplanting quail somites to chick embryos, comparing the development of DRG, motor nerves and sclerotomes. PNA did not bind to any part of the somites of 4.5-day quail embryos, although dorsal root ganglia and motor nerves appeared only in the rostral halves of sclerotomes as in chick embryos. Moreover, in spite of no PNA binding ability of the transplanted quail somite in 4.5-day chick-quail chimeric embryos, DRG and motor nerves derived from chick tissues appeared only in the rostral halves of the sclerotomes derived from these somites. Thus, both quail and chick neural crest cells and motor nerves recognized the difference between the rostral and caudal halves of sclerotomes of quail embryos in the absence of PNA binding ability, indicating that PNA binding site on somite cells does not support the selective neural crest migration and nerve growth.  相似文献   

16.
It has been suggested that substrate adhesion molecules of the tenascin family may be responsible for the segmented outgrowth of motor axons and neural crest cells during formation of the peripheral nervous system. We have used two monoclonal antibodies (M1B4 and 578) and an antiserum [KAF9(1)] to study the expression of J1/tenascin-related molecules within the somites of the chick embryo. Neural crest cells were identified with monoclonal antibodies HNK-1 and 20B4. Young somites are surrounded by J1/tenascin immunoreactive material, while old sclerotomes are immunoreactive predominantly in their rostral halves, as described by other authors (Tan et al. 1987--Proc. natn. Acad. Sci. U.S.A. 84, 7977; Mackie et al. 1988--Development 102, 237). At intermediate stages of development, however, immunoreactivity is found mainly in the caudal half of each sclerotome. After ablation of the neural crest, the pattern of immunoreactivity is no longer localised to the rostral halves of the older, neural-crest-free sclerotomes. SDS-polyacrylamide gel electrophoresis of affinity-purified somite tissue, extracted using M1B4 antibody, shows a characteristic set of bands, including one of about 230 x 10(3), as described for cytotactin, J1-200/220 and the monomeric form of tenascin. Affinity-purified somite material obtained from neural-crest-ablated somites reveals some of the bands seen in older control embryos, but the high molecular weight components (120-230 x 10(3] are missing. Young epithelial somites also lack the higher molecular mass components. The neural crest may therefore participate in the expression of J1/tenascin-related molecules in the chick embryo. These results suggest that these molecules are not directly responsible for the segmented outgrowth of precursors of the peripheral nervous system.  相似文献   

17.
The Notch signalling pathway plays essential roles during the specification of the rostral and caudal somite halves and subsequent segmentation of the paraxial mesoderm. We have re-investigated the role of presenilin 1 (Ps1; encoded by Psen1) during segmentation using newly generated alleles of the Psen1 mutation. In Psen1-deficient mice, proteolytic activation of Notch1 was significantly affected and the expression of several genes involved in the Notch signalling pathway was altered, including Delta-like3, Hes5, lunatic fringe (Lfng) and Mesp2. Thus, Ps1-dependent activation of the Notch pathway is essential for caudal half somite development. We observed defects in Notch signalling in both the caudal and rostral region of the presomitic mesoderm. In the caudal presomitic mesoderm, Ps1 was involved in maintaining the amplitude of cyclic activation of the Notch pathway, as represented by significant reduction of Lfng expression in Psen1-deficient mice. In the rostral presomitic mesoderm, rapid downregulation of the Mesp2 expression in the presumptive caudal half somite depends on Ps1 and is a prerequisite for caudal somite half specification. Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm. This implies that periodic activation of the Notch pathway in the presomitic mesoderm is still latent to segregate the presumptive rostral and caudal somite. A transient episode of Mesp2 expression might be needed for Notch activation by Ps1 to confer rostral or caudal properties. In summary, we propose that Ps1 is involved in the functional manifestation of the segmentation clock in the presomitic mesoderm.  相似文献   

18.
The epaxial muscles of the body are localized in a dorsomedial position with respect to the axial structures, attach to the vertebral column and are concerned with maintenance of posture and movements of the vertebral column. The epaxial musculature derives from the myotome, a transient embryonic structure whose formation is initiated at the epithelial somite stage and is accomplished following complete dissociation of the epithelial dermomyotome. Recent results suggest that myotome development is a multistage process, characterized by addition of sequential waves of muscle progenitors. A first wave originates along the medial part of the epithelial somite and gives rise to a primary myotomal structure; a second wave arises from the rostral and caudal lips of the epithelial dermomyotome and from the dorsomedial lip, which contributes indirectly through the rostral and caudal edges, and a third wave which is composed of mitotically active resident progenitors accounts for significant growth of the myotomal mass and for its transition into epaxial muscle. In this review we discuss the origin, migration and known cellular and molecular features that characterize each wave of progenitors that colonize the myotome.  相似文献   

19.
BACKGROUND: During somitogenesis, segmental patterns of gene activity provide the instructions by which mesenchymal cells epithelialize and form somites. Various members of the Eph family of transmembrane receptor tyrosine kinases and their Ephrin ligands are expressed in a segmental pattern in the rostral presomitic mesoderm. This pattern establishes a receptor/ligand interface at each site of somite furrow formation. In the fused somites (fss/tbx24) mutant, lack of intersomitic boundaries and epithelial somites is accompanied by a lack of Eph receptor/Ephrin signaling interfaces. These observations suggest a role for Eph/Ephrin signaling in the regulation of somite epithelialization. RESULTS: We show that restoration of Eph/Ephrin signaling in the paraxial mesoderm of fss mutants rescues most aspects of somite morphogenesis. First, restoration of bidirectional or unidirectional EphA4/Ephrin signaling results in the formation and maintenance of morphologically distinct boundaries. Second, activation of EphA4 leads to the cell-autonomous acquisition of a columnar morphology and apical redistribution of beta-catenin, aspects of epithelialization characteristic of cells at somite boundaries. Third, activation of EphA4 leads to nonautonomous acquisition of columnar morphology and polarized relocalization of the centrosome and nucleus in cells on the opposite side of the forming boundary. These nonautonomous aspects of epithelialization may involve interplay of EphA4 with other intercellular signaling molecules. CONCLUSIONS: Our results demonstrate that Eph/Ephrin signaling is an important component of the molecular mechanisms driving somite morphogenesis. We propose a new role for Eph receptors and Ephrins as intercellular signaling molecules that establish cell polarity during mesenchymal-to-epithelial transition of the paraxial mesoderm.  相似文献   

20.
Somites are mesodermal structures which appear transiently in vertebrates in the course of their development. Cells situated ventromedially in a somite differentiate into the sclerotome, which gives rise to cartilage, while the other part of the somite differentiates into dermomyotome which gives rise to muscle and dermis. The sclerotome is further divided into a rostral half, where neural crest cells settle and motor nerves grow, and a caudal half. To find out when these axes are determined and how they rule later development, especially the morphogenesis of cartilage derived from the somites, we transplanted the newly formed three caudal somites of 2.5-day-old quail embryos into chick embryos of about the same age, with reversal of some axes. The results were summarized as follows. (1) When transplantation reversed only the dorsoventral axis, one day after the operation the two caudal somites gave rise to normal dermomyotomes and sclerotomes, while the most rostral somite gave rise to a sclerotome abnormally situated just beneath ectoderm. These results suggest that the dorsoventral axis was not determined when the somites were formed, but began to be determined about three hours after their formation. (2) When the transplantation reversed only the rostrocaudal axis, two days after the operation the rudiments of dorsal root ganglia were formed at the caudal (originally rostral) halves of the transplanted sclerotomes. The rostrocaudal axis of the somites had therefore been determined when the somites were formed. (3) When the transplantation reversed both the dorsoventral and the rostrocaudal axes, two days after the operation, sclerotomes derived from the prospective dermomyotomal region of the somites were shown to keep their original rostrocaudal axis, judging from the position of the rudiments of ganglia. Combined with results 1 and 2, this suggested that the fate of the sclerotomal cells along the rostrocaudal axis was determined previously and independently of the determination of somite cell differentiation into dermomyotome and sclerotome. (4) In the 9.5-day-old chimeric embryos with rostrocaudally reversed somites, the morphology of vertebrae and ribs derived from the explanted somites were reversed along the rostrocaudal axis. The morphology of cartilage derived from the somites was shown to be determined intrinsically in the somites by the time these were formed from the segmental plate. The rostrocaudal pattern of the vertebral column is therefore controlled by factors intrinsic to the somitic mesoderm, and not by interactions between this mesoderm and the notochord and/or neural tube, arising after segmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号