首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraseptal injections of the selective cholinergic immunotoxin 192 IgG-saporin (SAP) were performed to determine whether basal forebrain cholinergic neurons are necessary for hormone-mediated enhancement of acquisition in a delayed matching-to-position (DMP) T-maze task. The DMP task is a simple spatial learning task. Studies have shown that continuous estradiol replacement enhances acquisition of the DMP task in young ovariectomized rats and that long-term treatment with either estradiol or estradiol + progesterone can prevent a deficit in DMP acquisition in old rats. In the present study, continuous estradiol replacement significantly enhanced acquisition of the DMP task by non-SAP-treated, ovariectomized rats. In contrast, neither continuous estradiol nor weekly administration of estradiol + progesterone significantly enhanced acquisition of the DMP task in rats that received intraseptal injections of either a high dose (1.0 microg) or a low dose (0.22 microg) of SAP. Animals that reached criterion were significantly impaired by rotating the maze 180 degrees regardless of treatment, suggesting that animals in all groups used extramaze cues to at least some degree to solve the task. SAP-treated animals were slightly more sensitive to increasing the intertrial delay than non-SAP-treated controls, suggesting that the SAP lesions produced a modest deficit in spatial working memory. Immunohistochemistry confirmed the loss of cholinergic neurons in specific regions of the basal forebrain of SAP-treated animals. In addition, DMP acquisition correlated significantly with ChAT activity in the hippocampus and frontal cortex. The data suggest that basal forebrain cholinergic projections are necessary for hormone-mediated enhancement of DMP acquisition.  相似文献   

2.
本文用免疫组化双标法观察了神经生长因子受体(NGF-R)及胆碱乙酰转移酶(ChAT)免疫反应阳性神经元在成鼠基底前脑内的分布,结果发现嗅结节、隔内侧核、斜角带核、腹侧苍白球及基底大细胞核均有NGF-R及ChAT免疫反应阳性神经元.免疫组化双标染色发现,大部分免疫反应阳性神经元的NGF-R与ChAT共存,部分神经元呈单纯NGF-R或ChAT阳性,但这种NGF-R和ChAT的共存情况在不同区域不完全相同.在隔内侧核和斜角带核,大多数的NGF-R阳性神经元和ChAT阳性神经元共存,但在腹侧仓白球和基底大细胞核,两者共存的神经元较前两区为少.此外ChAT阳性神经元在尾壳核中分布较均匀,而NGF-R阳性神经元较少见.研究结果表明,大多数胆碱能神经元有NGF-R,提示NGF对胆碱能神经元的保护和激活作用,部分可能是通过直接与NGF受体的结合而发生作用.  相似文献   

3.
Summary We report here on cholinergic neurons in the rat hippocampal formation that were identified by immunocytochemistry employing a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme. In general, ChAT-immunoreactive cells were rare, but were observed in all layers of the hippocampus proper and fascia dentata with a preponderance in zones adjacent to the hippocampal fissure and in the part of CA1 bordering the subiculum. All immunoreactive cells found were non-pyramidal neurons. They were relatively small with round or ovoid perikarya, which gave rise to thin spine-free dendrites. These hippocampal neurons were very similar to ChAT-immunoreactive cells in the neocortex of the same animals but were quite different from cholinergic neurons in the basal forebrain, medial septal nucleus, and neostriatum, which were larger and more intensely immunostained.Electron-microscopic analysis of ChAT-immunoreactive cells in the hippocampus and fascia dentata revealed synaptic contacts, mainly of the asymmetric type, on cell bodies and smooth proximal dendrites. The nuclei of the immunoreactive cells exhibited deep indentations, which are characteristic for non-pyramidal neurons.Our results provide evidence for an intrinsic source of the hippocampal cholinergic innervation in addition to the well-established septo-hippocampal cholinergic projection.Dr. C. Léránth is on leave of absence from the First Department of Anatomy, Semmelweis University Medical School, H-1450 Budapest, Hungary  相似文献   

4.
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific marker for identifying cholinergic neurons in the central and peripheral nervous systems. The present article reviews immunohistochemical and in situ hybridization studies on the distribution of neurons expressing ChAT in the human central nervous system. Neurons with both immunoreactivity and in situ hybridization signals of ChAT are observed in the basal forebrain (diagonal band of Broca and nucleus basalis of Meynert), striatum (caudate nucleus, putamen and nucleus accumbens), cerebral cortex, mesopontine tegmental nuclei (pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus and parabigeminal nucleus), cranial motor nuclei and spinal motor neurons. The cerebral cortex displays regional and laminal differences in the distribution of neurons with ChAT. The medial septal nucleus and medial habenular nucleus contain immunoreactive neurons for ChAT, which are devoid of ChAT mRNA signals. This is probably because there is a small number of cholinergic neurons with a low level of ChAT gene expression in these nuclei of human. Possible connections and speculated functions of these neurons are briefly summarized.  相似文献   

5.
6.
Effects of estrogen therapy on cognitive performance appear to diminish with age and time following the loss of ovarian function. We hypothesize that this is due to a reduction in basal forebrain cholinergic function and that treatment with a cholinergic enhancer can reverse the effect. This study tested whether combining the cholinesterase inhibitor donepezil with estradiol treatment can enhance/restore estradiol effects on cognitive performance in young ovariectomized rats with selective lesions of septal cholinergic neurons. 192IgG-saporin was injected directly into the medial septum to produce selective cholinergic lesions. Rats were then treated with donepezil (Don, daily injections of 3 mg/kg/day, i.p.) or vehicle, and then with 17β-estradiol (E2, administered by silastic capsule implanted s.c.) or an empty capsule. Rats were trained on a delayed matching-to-position (DMP) T-maze task which previous studies have shown is sensitive to ovariectomy and estrogen replacement. Results show that neither estradiol nor donepezil alone significantly enhanced acquisition of the DMP task in rats with cholinergic lesions. Combination therapy was effective, however, depending on the severity of the lesion. Don + E2 significantly enhanced acquisition of the task in rats with partial lesions (< 50% loss of cholinergic neurons), but not in rats with severe lesions. This effect was due largely to a reduction in perseverative behavior. Don + E2 also improved working memory in rats with partial lesions, as evidenced by significantly better performance than controls during increased intertrial delays. These findings suggest that even partial loss of septal cholinergic neurons can reduce effects of estrogen therapy on cognitive performance, and demonstrate that combining a cholinesterase inhibitor with estrogen therapy can help to restore beneficial effects on performance. We propose that combination therapy may have similar beneficial effects in women, particularly in older women who have not used estrogen therapy for many years and are beginning to show signs of cognitive impairment or early Alzheimer's disease.  相似文献   

7.
Ts65Dn mice, trisomic for a portion of chromosome 16 segmentally homologous to human chromosome 21, are an animal model for Down's syndrome and related neurodegenerative diseases, such as dementia of the Alzheimer type. In these mice, cognitive deficits and alterations in number of basal forebrain cholinergic neurons have been described. We have measured in Ts65Dn mice the catalytic activity of the cholinergic marker, choline acetyltransferase (ChAT), as well as the activity of the acetylcholine-degrading enzyme acetylcholinesterase (AChE), in the hippocampus and in cortical targets of basal forebrain cholinergic neurons. In mice aged 10 months, ChAT activity was significantly higher in Ts65Dn mice, compared to 2N animals, in the hippocampus, olfactory bulb, olfactory cortex, pre-frontal cortex, but not in other neocortical regions. At 19 months of age, on the other hand, no differences in ChAT activity were found. Thus, alterations of ChAT activity in these forebrain areas seem to recapitulate those recently described in patients scored as cases of mild cognitive impairment or mild Alzheimer's disease. Other neurochemical markers putatively associated with the disease progression, such as those implicating astrocytic hyperactivity and overproduction of amyloid precursor protein family, were preferentially found altered in some brain regions at the oldest age examined (19 months).  相似文献   

8.
Lesions of the basal forebrain deplete the neocortex of cholinergic fibers. Acetylcholine depletion in the somatosensory cortex of rats results in reduced stimulus-evoked activity in response to whisker stimulation. Previous studies demonstrate that embryonic basal forebrain transplants improve functional activity toward normal. It is not clear if the activity increase is due to cholinergic replacement or other factors present in the graft. In this study, we examined the possibility that nerve growth factor (NGF), a neurotrophin known as a survival factor and a specific protectant for cholinergic basal forebrain neurons, can preserve basal forebrain cells after a lesion and restore functional activity in the somatosensory cortex. We report that NGF alone is capable of restoring functional activity in the barrel cortex of animals with basal forebrain lesions, while vehicle injections of saline do not alter activity. Both high (10 mug) and low (5 mug) doses of NGF unilaterally injected into the lateral ventricle improved stimulus-evoked functional activity during bilateral whisker stimulation. The mechanism of NGF action is not clear since the restoration of functional activity in cortex was not accompanied by increased cholinergic activity as detected by acetylcholinesterase fiber staining. NGF may act directly on cortical neurons, although its site of action is not well defined.  相似文献   

9.
The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain.  相似文献   

10.
This study was undertaken to estimate the total number of cholinergic cells and the percentage of cholinergic cells that contain estrogen receptor-alpha (ER alpha) in the rat basal forebrain. Double immunostaining for choline acetyltransferase (ChAT) and ER alpha was carried out on 50-microm-thick free-floating sections. Because routine mounting method causes considerable flattening of the sections, we embedded immunostained sections in Durcupan, an epoxy resin known to cause virtually no shrinkage. When this procedure was used the section thickness was well preserved, individual cells could be clearly identified, and subcellular localization of ER alpha immunoreactivity was easy to verify. Cell counting in these sections revealed that the rat basal forebrain contains 26,390 +/- 1097 (mean +/- SEM) cholinergic neurons. This comprises 9674 +/- 504 in the medial septum-vertical diagonal band of Broca, 9403 +/- 484 in the horizontal diagonal band of Broca, and 7312 +/- 281 in the nucleus basalis. In these nuclei, 60%, 46%, and 14% of the cholinergic neurons were co-localized with ER alpha, respectively. We believe that our results are an improvement on existing data because of the better distinction of individual neurons that the Durcupan embedding method brings.  相似文献   

11.
Aging does not affect tissues in a uniform fashion. Within the brain, substantial neuronal dropout occurs with age in the cholinergic medial basal forebrain complex, the noradrenergic locus coeruleus, and the dopaminergic substantia nigra pars compacta. These areas are also struck by diseases that are sharply age dependent. Alzheimer's disease causes neuronal destruction in the cholinergic cells of the medial basal forebrain and noradrenergic cells of the locus coeruleus. Parkinson's disease causes neuronal destruction mainly in the substantia nigra but with some destruction in the locus coeruleus. Parkinsonism-dementia affects all three areas. Alzheimer's disease is responsible for 50-60% of all cases of dementia. Severe dementia rises in frequency from less than 1% of the population at age 65-70 to over 15% by age 85. The cause of the disease is unknown. No method of prevention is known and present treatments are ineffective, although modest improvement has been reported for various therapeutic regimens designed to stimulate the cholinergic system. The neuronal systems identified as being affected in Alzheimer's disease and in the dementia of Parkinsonism correspond with those shown many years ago to be associated with the reticular activating system. This correspondence permits a new hypothesis of cognition and memory to be put forward, as well as a reinterpretation of data from animal research on the reticular activating system performed over a quarter of a century ago. The locus coeruleus is proposed as the noradrenergic element sensitizing the cortex to conscious recognition of real time events. The medial basal forebrain complex is proposed as the system registering the conscious event for storage and as the readout device when it is subsequently redisplayed in the cortex as memory. Storage could either be in the temporal lobe, in several areas of cortex with feedback to the medial basal forebrain, or in the cholinergic cells themselves.  相似文献   

12.
Conjugated equine estrogen (CEE) is the most commonly prescribed estrogen therapy, and is the estrogen used in the Women's Health Initiative study. While in-vitro studies suggest that CEE is neuroprotective, no study has evaluated CEE's effects on a cognitive battery and brain immunohistochemistry in an animal model. The current experiment tested whether CEE impacted: I) spatial learning, reference memory, working memory and long-term retention, as well as ability to handle mnemonic delay and interference challenges; and, II) the cholinergic system, via pharmacological challenge during memory testing and ChAT-immunoreactive cell counts in the basal forebrain. Middle-aged ovariectomized (Ovx) rats received chronic cyclic injections of either Oil (vehicle), CEE-Low (10 μg), CEE-Medium (20 μg) or CEE-High (30 μg) treatment. Relative to the Oil group, all three CEE groups showed less overnight forgetting on the spatial reference memory task, and the CEE-High group had enhanced platform localization during the probe trial. All CEE groups exhibited enhanced learning on the spatial working memory task, and CEE dose-dependently protected against scopolamine-induced amnesia with every rat receiving the highest CEE dose maintaining zero errors after scopolamine challenge. CEE also increased number of ChAT-immunoreactive neurons in the vertical diagonal band of the basal forebrain. Neither the ability to remember after a delay nor interference, nor long-term retention, was influenced by the CEE regimen used in this study. These findings are similar to those reported previously for 17 β-estradiol, and suggest that CEE can provide cognitive benefits on spatial learning, reference and working memory, possibly through cholinergic mechanisms.  相似文献   

13.
Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 microg of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 microg of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 microg of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson's disease.  相似文献   

14.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

15.
The trophic effect of continuous intraventricular infusion of nerve growth factor (NGF) on morphology of the basal forebrain (BF) cholinergic neurons was tested in 4- and 28-month-old male Wistar rats. All studies were conducted using behaviorally uncharacterized animals from the same breeding colony. Immunohistochemical procedure for choline acetyltransferase (ChAT) and p75NTR receptor has been applied to identify cholinergic cells in the structures of basal forebrain (BF). Using a quantitative image analyzer, morphometric and densitometric parameters of ChAT- and p75NTR-positive cells were measured immediately after cessation of NGF infusion. In 28-month-old non-treated rats the number of intensively ChAT-positive cells in all forebrain structures was reduced by 50-70% as compared with young animals. The remaining ChAT-positive cells appeared shrunken and the neuropil staining was NTR markedly reduced. In contrast, the same neurons when stained for p75 were numerous and distinctly visible with perfect morphology. Analysis of Nissl stained sections also showed that 28-month-old rats did not display significant losses of neuronal cell bodies. NGF restored the number of intensely stained ChAT-positive cells to about 90% of that for young controls and caused a significant increase in size of those cells in 28-month-old rats as compared with the control, age-matched group. NGF did not influence the morphology of p75NTR-positive neurons, which were well labeled, irrespective of treatment and age of the rats. In 4-month-old rats, NGF infusion decreased the intensity of both ChAT and p75NTR immunostaining. These data provide some evidence for preservation of BF cholinergic neurons from atrophy during aging and indicate that senile impairment of the cholinergic system in rats concerns decrease in ChAT-protein expression rather than an acute degeneration of neuronal cell bodies. Treatment with NGF resulted in restoration of cholinergic phenotype in the BF neurons of aged rats. However, the present study also rises issue of possible detrimental effects of NGF in young normal animals.  相似文献   

16.
Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic?   总被引:5,自引:0,他引:5  
A M Palmer  S Gershon 《FASEB journal》1990,4(10):2745-2752
The hypothesis that the symptomatology of Alzheimer's disease is attributable to cholinergic dysfunction is supported by postmortem studies that have demonstrated reduced choline acetyltransferase (ChAT) activity across all areas of cerebral cortex and diminished numbers of perikarya in the basal forebrain nucleus basalis of Meynert. Biopsy studies of ChAT activity, choline uptake, and acetylcholine synthesis also suggest that cholinergic denervation occurs relatively early in the course of the disease, and in confirmation of postmortem data, correlates with the severity of cognitive impairment. An alternative hypothesis to explain the dementia of Alzheimer's disease is the glutamatergic hypothesis. This is based largely on postmortem evidence indicating reduced binding and uptake of D[3H]aspartate, as well as loss of a number of other putative markers, such as phosphate-activated glutaminase activity, glutamate concentration, and the number of pyramidal cell perikarya, with this latter change correlating with the severity of dementia. Short-comings of each hypothesis are discussed and the merits of single neuron hypotheses to explain the dementia of Alzheimer's disease are considered.  相似文献   

17.
G A Higgins  S Koh  K S Chen  F H Gage 《Neuron》1989,3(2):247-256
Chronic infusion of nerve growth factor (NGF) into the forebrain of the adult rat produced increases in NGF receptor (NGF-R) mRNA hybridization, NGF-R immunoreactivity, choline acetyltransferase (ChAT) mRNA hybridization, and neuronal hypertrophy, when compared with vehicle infusion or noninfused rat brain. In situ hybridization showed NGF induction of NGF-R gene expression, documented by increases in the number of NGF-R mRNA-positive cells within the medial septum, diagonal band, and nucleus basalis magnocellularis. NGF also produced hypertrophy of ChAT mRNA-positive neurons. These results suggest that NGF produces cholinergic neuronal hypertrophy through induction of NGF-R gene expression within the basal forebrain.  相似文献   

18.
Down's syndrome (DS) individuals develop neuropathological features similar to Alzheimer's disease (AD), including degeneration of cholinergic basal forebrain (CBF) neurons. In AD a reduction in CBF/trkA-containing neurons has been suggested to trigger a hyperexpression of galaninergic fibers within the nucleus basalis subfield of the basal forebrain. The present study examined the interrelationship between reductions in CBF/trkA-containing neurons and the overexpression of galaninergic fibers within the nucleus basalis in DS. Within the nucleus basalis stereologic evaluation revealed a 46% reduction in the number of trkA-immunopositive neurons, whereas optical density measurements displayed a nonsignificant 18% reduction in neuronal trkA immunoreactivity in DS as compared with age-matched controls. Western blot analysis also showed a significant reduction in cortical trkA protein levels in DS. A semiquantitative examination of galaninergic fibers in the nucleus basalis revealed only a modest hypertrophy of galaninergic fibers within the nucleus basalis in DS. The present findings indicate a significant reduction in trkA within the nucleus basalis and cortex with only a moderate hypertrophy of galaninergic fibers in DS. These observations suggest that DS may not be an exact genetic model for investigation of changes in the AD basal forebrain.  相似文献   

19.
20.
To understand how female sex hormones influence homeostatic mechanisms of sleep, we studied the effects of estradiol (E(2)) replacement on c-Fos immunoreactivity in sleep/wake-regulatory brain areas after sleep deprivation (SD) in ovariectomized rats. Adult rats were ovariectomized and implanted subcutaneously with capsules containing 17beta-E(2) (10.5 microg; to mimic diestrous E(2) levels) or oil. After 2 wk, animals with E(2) capsules received a single subcutaneous injection of 17beta-E(2) (10 microg/kg; to achieve proestrous E(2) levels) or oil; control animals with oil capsules received an oil injection. Twenty-four hours later, animals were either left undisturbed or sleep deprived by "gentle handling" for 6 h during the early light phase, and killed. E(2) treatment increased serum E(2) levels and uterus weights dose dependently, while attenuating body weight gain. Regardless of hormonal conditions, SD increased c-Fos immunoreactivity in all four arousal-promoting areas and four limbic and neuroendocrine nuclei studied, whereas it decreased c-Fos labeling in the sleep-promoting ventrolateral preoptic nucleus (VLPO). Low and high E(2) treatments enhanced the SD-induced c-Fos immunoreactivity in the laterodorsal subnucleus of the bed nucleus of stria terminalis and the tuberomammillary nucleus, and in orexin-containing hypothalamic neurons, with no effect on the basal forebrain and locus coeruleus. The high E(2) treatment decreased c-Fos labeling in the VLPO under nondeprived conditions. These results indicate that E(2) replacement modulates SD-induced or spontaneous c-Fos expression in sleep/wake-regulatory and limbic forebrain nuclei. These modulatory effects of E(2) replacement on neuronal activity may be, in part, responsible for E(2)'s influence on sleep/wake behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号