首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
昆虫病原线虫共生细菌是寄生在昆虫病原线虫肠道的一种细菌,二者互惠共生。实验采用6个不同种的菌株为筛选材料。共生细菌菌株的培养液经85%饱和度的(NH4)2SO4盐析,浓缩冻干得到杀虫粗提物。以粗提物注射大蜡螟Galleria mellonella、饲喂玉米螟Ostrinia furnacalis和棉铃虫Helicoverpa armigera,发现Xenorhabdus nematophilus D43、X.bovienii A54、Photorhabdus luminescens HZL和CB-8等4个菌株发酵液的粗提物对昆虫有高的血腔毒性,菌株A54对昆虫又有高的胃毒效果。由此确立A54为高毒力的菌株,其杀虫活性表现为:注射大蜡螟48 h的死亡率为80%,96 h为93.3%;粗提物饲喂玉米螟,72 h死亡率为53.3%,120 h死亡率为100%;饲喂棉铃虫,72 h死亡率为80.1%,120 h死亡率为90%。杀虫粗提物经DEAE-52柱层析分离,得到一个穿透峰和三个盐的梯度洗脱峰,其中穿透峰对昆虫有很好的胃毒效果,但没有血腔毒性;三个盐峰均有很高的血腔毒性,但没有胃毒作用。穿透峰样品饲喂2龄、3龄棉铃虫也有很好的杀虫活性,96 h 2龄棉铃虫的死亡率为65%,3龄棉铃虫的死亡率为30%;处理96 h的棉铃虫同处理前相比体重下降,未死棉铃虫体重明显低于对照。  相似文献   

2.
Xenorhabdus and Photorhabdus are gram-negative bacteria that produce a range of proteins that are toxic to insects. We recently identified a novel 42-kDa protein from Xenorhabdus nematophila that was lethal to the larvae of insects such as Galleria mellonella and Helicoverpa armigera when it was injected at doses of 30 to 40 ng/g larvae. In the present work, the toxin gene txp40 was identified in another 59 strains of Xenorhabdus and Photorhabdus, indicating that it is both highly conserved and widespread among these bacteria. Recombinant toxin protein was shown to be active against a variety of insect species by direct injection into the larvae of the lepidopteran species G. mellonella, H. armigera, and Plodia interpunctella and the dipteran species Lucilia cuprina. The protein exhibited significant cytotoxicity against two dipteran cell lines and two lepidopteran cell lines but not against a mammalian cell line. Histological data from H. armigera larvae into which the toxin was injected suggested that the primary site of action of the toxin is the midgut, although some damage to the fat body was also observed.  相似文献   

3.
The interaction between Bacillus thuringiensis insecticidal crystal protein Cry1A and cadherin receptors in lepidopteran insects induces toxin oligomerization, which is essential for membrane insertion and mediates Cry1A toxicity. It has been reported that Manduca sexta cadherin fragment CR12-MPED and Anopheles gambiae cadherin fragment CR11-MPED enhance the insecticidal activity of Cry1Ab and Cry4Ba to certain lepidopteran and dipteran larvae species, respectively. This study reports that a Helicoverpa armigera cadherin fragment (HaCad1) containing its toxin binding region, expressed in Escherichia coli, enhanced Cry1Ac activity against H. armigera larvae. A binding assay showed that HaCad1 was able to bind to Cry1Ac in vitro and that this event did not block toxin binding to the brush border membrane microvilli prepared from H. armigera. When the residues 1423GVLSLNFQ1430 were deleted from the fragment, the subsequent mutation peptide lost its ability to bind Cry1Ac and the toxicity enhancement was also significantly reduced. Oligomerization tests showed that HaCad1 facilitates the formation of a 250-kDa oligomer of Cry1Ac-activated toxin in the midgut fluid environment. Oligomer formation was dependent upon the toxin binding to HaCad1, which was also necessary for the HaCad1-mediated enhancement effect. Our discovery reveals a novel strategy to enhance insecticidal activity or to overcome the resistance of insects to B. thuringiensis toxin-based biopesticides and transgenic crops.  相似文献   

4.
Xenorhabdus spp. and Photorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the families Steinernematidae and Heterorhabditidae, respectively, were shown to produce different lipases when they were grown on suitable nutrient agar. Substrate specificity studies showed that Photorhabdus spp. exhibited a broad lipase activity, while most of the Xenorhabdus spp. secreted a specific lecithinase. Xenorhabdus spp. occur spontaneously in two variants, phase I and phase II. Only the phase I variants of Xenorhabdus nematophilus and Xenorhabdus bovienii strains produced lecithinase activity when the bacteria were grown on a solid lecithin medium (0.01% lecithin nutrient agar; 24 h of growth). Five enzymatic isomers responsible for this activity were separated from the supernatant of a X. nematophilus F1 culture in two chromatographic steps, cation-exchange chromatography and C18 reverse-phase chromatography. The substrate specificity of the X. nematophilus F1 lecithinase suggested that a phospholipase C preferentially active on phosphatidylcholine could be isolated. The entomotoxic properties of each isomer were tested by injection into the hemocoels of insect larvae. None of the isomers exhibited toxicity with the insects tested, Locusta migratoria, Galleria mellonella, Spodoptera littoralis, and Manduca sexta. The possible role of lecithinase as either a virulence factor or a symbiotic factor is discussed.  相似文献   

5.
A sporulating culture ofBacillus thuringiensis subsp.kenyae strain HD549 is toxic to larvae of lepidopteran insect species such asSpodoptera litura, Helicoverpa armigera andPhthorimaea operculella, and a dipteran insect,Culex fatigans. A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed inE. coli. The recombinant protein produced 92% mortality in first-instar larvae ofSpodoptera litura and 86% inhibition of adult emergence inPhthorimaea operculella, but showed very low toxicity againstHelicoverpa armigera, and lower mortality against third-instar larvae of dipteran insectsCulex fatigans, Anopheles stephensi andAedes aegypti. The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene fromBacillus thuringiensis var.kurstaki, with only five mutations scattered in different regions. Amino acid alignment with different insecticidal crystal proteins using the MUTALIN program suggested presence of the conserved block 3 region in the sequence of this protein. A mutation in codon 409 of this gene that changes a highly conserved phenylalanine residue to serine lies in this block.  相似文献   

6.
Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host). In terms of host susceptibility of lepidopteran larvae to S. thermophilum, based on the LC50 36 hr after treatment, G. mellonella (LC50 = 16.28 IJ/larva) was found to be more susceptible than S. litura (LC50 = 85 IJ/larva), whereas neither host was found to be significantly different from H. armigera (LC50 = 54.68 IJ/larva). In addition to virulence to the larval stages, ovicidal activity up to 84% was observed at 200 IJ/50 and 100 eggs of H. armigera and S. litura, respectively. To our knowledge this is the first report of entomopathogenic nematode pathogenicity to lepidopteran eggs. Production of infective juvenile (IJ) nematodes/insect larva was also measured and found to be positively correlated with rate of IJ for H. armigera (r = 0.990), S. litura (r = 0.892), as well as G. mellonella (r = 0.834). Both Phase I and Phase II of symbiotic bacteria Xenorhabdus indica were tested separately against neonates of H. armigera and S. litura by feeding assays and found to be virulent to the target pests; phase variation did not affect the level of virulence. Thus S. thermophilum as well as the nematode’s symbiotic bacteria applied separately have the potential to be developed as biocontrol agents for key lepidopteran pests.  相似文献   

7.
Xenorhabdus and Photorhabdus species are entomopathogenic bacteria with a wide insect host range, that belong to the family Enterobacteriaceae. Xenorhabdus and Photorhabdus species symbiotically associate with nematodes of the families Steinernematidae and Heterorhabditidae respectively. The factor(s) determining the symbiotic interaction between nematodes and bacteria are yet to be identified. Xenorhabdus and Photorhabdus species exist in two main phenotypic forms, a phenomenon known as phase variation. The phase I (or primary form) varies from phase II (or secondary form) in certain physiological and morphological characteristics. There is no variation in the DNA integrity of phase I and phase II and this supports epigenetic regulatory mechanism in phase variation. Certain pathogenic determinants such as pili, lipopolysaccharides and toxins contribute to the pathogenicity of Xenorhabdus and Photorhabdus species, and both appear to be equally pathogenic to insects. The observed similarity in their virulence to insect hosts may reflect possible in vivo conversion of phase II to phase I, however the host cellular invasion and virulence is yet to be properly understood. The virulence of Xenorhabdus variants varies among insects apparently due to factors which include the feeding habits of the insects. The molecular mechanism and biological significance of phase variation are presently unknown.  相似文献   

8.
Terrestrial isopods can be killed by some entomopathogenic bacteria among Xenorhabdus and Photorhabdus species even with no or very limited multiplication. This suggests that toxemia and not septicemia is the major cause of entomopathogenic bacteria pathogenicity against these crustaceans. In this paper, we revealed that the injection of stationary phase culture supernatant of P. luminescens TT01, in which toxins can be accumulated, led alone to a rapid decrease in the number of host immune cells and killed most of the Armadillidium vulgare individuals within 48 h. The pathogenicity was strongly attenuated when supernatant was heated and totally suppressed after 100-kDa filtration suggesting that the toxin responsible for killing A. vulgare would be a protein above this size. Additionally, we tested the culture supernatant of two TT01 mutants that have been previously shown as being altered in their pathogenicity against lepidopteran insects one of them being known as exhibiting lower expression of some toxins. However, the supernatants of the mutants was as pathogenic for A. vulgare as the wild type strains suggesting that the toxins involved in killing A. vulgare may be different than previously described ones.  相似文献   

9.
Entomopathogenic nematodes (EPNs) are small worms whose ecological behaviour consists to invade, kill insects and feed on their cadavers thanks to a species-specific symbiotic bacterium belonging to any of the genera Xenorhabdus or Photorhabdus hosted in the gastro-intestinal tract of EPNs. The symbiont provides a number of biological functions that are essential for its EPN host including the production of entomotoxins, of enzymes able to degrade the insect constitutive macromolecules and of antimicrobial compounds able to prevent the growth of competitors in the insect cadaver. The question addressed in this study was to investigate whether a mammalian pathogen taxonomically related to Xenorhabdus was able to substitute for or “hijack” the symbiotic relationship associating Xenorhabdus and Steinernema EPNs. To deal with this question, a laboratory experimental model was developed consisting in Galleria mellonella insect larvae, Steinernema EPNs with or without their natural Xenorhabdus symbiont and Yersinia pseudotuberculosis brought artificially either in the gut of EPNs or in the haemocoel of the insect larva prior to infection. The developed model demonstrated the capacity of EPNs to act as an efficient reservoir ensuring exponential multiplication, maintenance and dissemination of Y. pseudotuberculosis.  相似文献   

10.
11.
12.
The Toxin Complex (TC) is a large multi-subunit toxin first characterized in the insect pathogens Photorhabdus and Xenorhabdus, but now seen in a range of pathogens, including those of humans. These complexes comprise three protein subunits, A, B and C which in the Xenorhabdus toxin are found in a 4∶1∶1 stoichiometry. Some TCs have been demonstrated to exhibit oral toxicity to insects and have the potential to be developed as a pest control technology. The lack of recognisable signal sequences in the three large component proteins hinders an understanding of their mode of secretion. Nevertheless, we have shown the Photorhabdus luminescens (Pl) Tcd complex has been shown to associate with the bacteria''s surface, although some strains can also release it into the surrounding milieu. The large number of tc gene homologues in Pl make study of the export process difficult and as such we have developed and validated a heterologous Escherichia coli expression model to study the release of these important toxins. In addition to this model, we have used comparative genomics between a strain that releases high levels of Tcd into the supernatant and one that retains the toxin on its surface, to identify a protein responsible for enhancing secretion and release of these toxins. This protein is a putative lipase (Pdl1) which is regulated by a small tightly linked antagonist protein (Orf53). The identification of homologues of these in other bacteria, linked to other virulence factor operons, such as type VI secretion systems, suggests that these genes represent a general and widespread mechanism for enhancing toxin release in Gram negative pathogens.  相似文献   

13.
The native crystal delta-endotoxin produced by Bacillus thuringiensis var. colmeri, serotype 21, is toxic to both lepidopteran (Pieris brassicae) and dipteran (Aedes aegypti) larvae. Solubilization of the crystal delta-endotoxin in alkaline reducing conditions and activation with trypsin and gut extracts from susceptible insects yielded a preparation whose toxicity could be assayed in vitro against a range of insect cell lines. After activation with Aedes aegypti gut extract the preparation was toxic to all of the mosquito cell lines but only one lepidopteran line (Spodoptera frugiperda), whereas an activated preparation produced by treatment with P. brassicae gut enzymes or trypsin was toxic only to lepidopteran cell lines. These in vitro results were paralleled by the results of in vivo bioassays. Gel electrophoretic analysis of the products of these different activation regimes suggested that a 130-kDa protoxin in the native crystal is converted to a 55-kDa lepidopteran-specific toxin by trypsin or P. brassicae enzymes and to a 52-kDa dipteran toxin by A. aegypti enzymes. Two-step activation of the 130-kDa protoxin by successive treatment with trypsin and A. aegypti enzymes further suggested that the 52-kDa dipteran toxin is derived from the 55-kDa lepidopteran toxin by enzymes specific to the mosquito gut. Confirmation of this suggestion was obtained by peptide mapping of these two polypeptides. The native crystal 130 kDa delta-endotoxin and the two insect-specific toxins all cross-reacted with antiserum to B. thuringiensis var. kurstaki P1 lepidopteran toxin. Preincubation of the two activated colmeri toxins with P1 antiserum neutralized their cytotoxicity to both lepidopteran and dipteran cell lines.  相似文献   

14.
As a comparison to a similar study on Photorhabdus strains, 15 Xenorhabdus bacterial strains and secondary phenotypic variants of two strains were screened for proteolytic activity by five detection methods. Although the number and intensity of proteolytic activities were different, every strain was positive for proteolytic activity by several tests. Zymography following native PAGE detected two groups of activities with different substrate affinities and a higher and lower electrophoretic mobility that were distinguished as activity 1 and 2, respectively. Zymography following SDS-PAGE resolved three activities, which were provisionally named proteases A, B, and C. Only protease B, an ∼55-kDa enzyme, was produced by every strain. This enzyme exhibited higher affinity to the gelatin substrate than to the casein substrate. Of the chromogenic substrates used, three were hydrolyzed: furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY), Fua-LGPA (LGPA is Leu-Gly-Pro-Ala) (a substrate for collagen peptidases), and succinyl-Ala-Ala-Pro-Phe-thiobenzyl (Succ-AAPF-SBzl). All but the Fua-LGPA-ase activity seemed to be from secreted enzymes. According to their substrate preference profiles and inhibitor sensitivities, at least six such proteolytic enzymes could be distinguished in the culture medium of Xenorhabdus strains. The proteolytic enzyme that was secreted the earliest, protease B and the Succ-AAPF-SBzl-hydrolyzing enzyme, appeared from the early logarithmic phase of growth. Protease B could also be detected in the hemolymph of Xenorhabdus-infected Galleria mellonella larvae from 15 h postinfection. The purified protease B hydrolyzed in vitro seven proteins in the hemolymph of Manduca sexta that were also cleaved by PrtA peptidase from Photorhabdus. The N-terminal sequence of protease B showed similarity to a 55-kDa serralysin type metalloprotease in Xenorhabdus nematophila, which had been identified as an orthologue of Photorhabdus PrtA peptidase.Xenorhabdus and Photorhabdus bacteria are highly virulent, fatal pathogens for insects. Phylogenetically, they are sister genera in the family Enterobacteriaceae (3, 4). There are some differences between Xenorhabdus and Photorhabdus in their biology (e.g., light production), and they also differ in their interaction with their symbiotic nematode partners, which are in the Steinernematidae and Heterorhabditidae genera, respectively (8, 9). At the same time, they also have several properties in common. For example, due to their similar strategy of infection, their entrance into the hemocoel is absolutely dependent on the invasion of insects by their symbiotic nematode partners. An interesting feature of both genera is that they have two phenotypic (form) variants, primary and secondary (9). The primary form is natural, while the secondary form can be observed (generated) mostly in the laboratory. They differ in, for example, antibiotic production, outer membrane proteins, and cell surface structures (fimbriae and flagellae [23], symbiotic capabilities with nematode partners, and exoenzyme production [9]). The secondary form variants were found, with nonbiochemical detection methods, to produce less or no proteolytic activity compared to the primary phenotypic variants (see references 9 and 23 and references therein). The high pathogenicity makes Xenorhabdus and Photorhabdus good model organisms of infection, which can be exploited—by studying the function of their virulence factors—for the investigation of the immune system of insects and the mechanisms the pathogens use to cope with the immune defense of hosts. The comparative analysis of these bacterial partners provides an opportunity to study the question of how similar the infection mechanisms can be at the molecular level of two evolutionarily different insect pathogen bacterium-nematode complexes that, at the same time, have similar infection strategies.Of the virulence factors, we have been interested in secreted proteases that may be used by the pathogens during the first stage of infection in the penetration of the tissues of host or in the suppression of its immune response. The secretion and biochemistry of these enzymes are better studied in Photorhabdus, where four secreted proteases could be detected in a screen of 20 strains by a combination of five methods (15). The earliest secreted Photorhabdus protease is PrtA peptidase, a metzincin in the M10B family of serralysins. The others are PhpC (Photorhabdus protease C), which belongs to the M4 metallopeptidase family of thermolysin-like proteases, OpdA, a collagen peptidase in the family of thimet oligopeptidases and PhpD, a furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY)-cleaving enzyme, the identity of which is still unknown. In contrast, although a number of Xenorhabdus strains were tested for proteolytic activity with simple bacteriological plate assays (2, 25), only one (Xenorhabdus nematophila) was investigated by a biochemical detection method of protease activities, zymography. Two activities have been found by this method, and one of these activities has been partially characterized (5).As an approach to establish the similarity between Xenorhabdus and Photorhabdus in the mechanism of infection regarding the type and role of proteolytic enzymes, we investigated 15 Xenorhabdus strains for the secretion of proteases employing the same five detection methods that we had previously used for Photorhabdus strains. Two of the strains (Xenorhabdus nematophila AN6 and Xenorhabdus cabanillassii RIO-HU) were represented with their phenotypic variant pairs.  相似文献   

15.
The oral toxicity of 5 Photorhabdus spp. strains collected in different regions of Korea was determined in the larvae of Plodia interpunctella, Galleria mellonella, Lucilia caesar, and Culex pipiens pallens. When diet or water containing culture media containing 1 of the 5 different strains was ingested by immature insects, the first instar larvae of both G. mellonella and L. caesar and young larvae of C. pipiens pallens died within 3–5 days after treatment. However, mortality of P. interpunctella neonate larvae was slightly slower and reached 94.4%–100% within 7 days after treatment. The mortality rate of a control group given a diet containing water, the medium without cultured bacteria, or Escherichia coli culture medium was not affected. The mortality rates were 100%, 45.3%, 2.8%, and 0% for Galleria, Lucilia, Plodia, and Culex, respectively, in another control group given a culture medium of Photorhabdus luminescens ssp. laumondii (TT01). In addition, culture media containing Photorhabdus strains significantly inhibited molting of third instar Plodia larvae by as much as 88% 7 days after treatment, whereas molting inhibition was reduced by 0%, 4%, and 20% following treatments with water, E. coli, or TT01 culture media, respectively. Our results suggest that the oral administration of Photorhabdus bacterial medium was highly effective for controlling various immature insects.  相似文献   

16.
《Journal of Asia》2022,25(4):101997
Xenorhabdus and Photorhabdus are two bacterial genera specifically symbiotic to Steinernema and Heterorhabditis, which are the entomopathogenic nematode genera, respectively. These bacteria are well known to produce potent secondary metabolites suppressing insect immune responses. This study aimed to develop a potent microbial insecticide against the onion thrips, Thrips tabaci, using the bacterial metabolites. Among the chemical insecticides that have been used to control the thrips, spinosad was highly effective against both larvae and adults of T. tabaci. Three different entomopathogenic fungi were also effective to kill the thrips. However, the fungal virulence was much less than the control efficacy of the chemical insecticide, spinosad. To enhance the fungal virulence of Beauveria bassiana (Bb), the bacterial culture broth of Xenorhabdus/Photorhabdus was added to suppress the thrips immune defense. Among six different bacterial species, X. hominickii (Xh) produced highly potent metabolites to enhance the fungal virulence. Indeed, four different bacterial metabolites (GameXPeptide, benzylideneacetone, oxindole, and 3-ethoxy-4-methoxyphenol) of the bacteria suppressed the gene expressions of an antimicrobial peptide, lysozyme, which was highly inducible to the fungal infection. To optimize the mixture ratio of fungal and bacterial pathogens, the fungal conidia and bacterial culture broth were freeze-dried and mixed in different ratios. Laboratory and field assays showed that a mixture spray of freeze-dried Xh culture broth (3 g) and Bb conidia (1.17 × 109 conidia) in a liter was effective to control T. tabaci infesting welsh onion.  相似文献   

17.
18.
Xenorhabdus and Photorhabdus spp. are bacterial symbionts of entomopathogenic nematodes (EPNs). In this study, we isolated and characterized Xenorhabdus and Photorhabdus spp. from across Thailand together with their associated nematode symbionts, and characterized their phylogenetic diversity. EPNs were isolated from soil samples using a Galleria-baiting technique. Bacteria from EPNs were cultured and genotyped based on recA sequence. The nematodes were identified based on sequences of 28S rDNA and internal transcribed spacer regions. A total of 795 soil samples were collected from 159 sites in 13 provinces across Thailand. A total of 126 EPNs isolated from samples taken from 10 provinces were positive for Xenorhabdus (n = 69) or Photorhabdus spp. (n = 57). Phylogenetic analysis separated the 69 Xenorhabdus isolates into 4 groups. Groups 1, 2 and 3 consisting of 52, 13 and 1 isolates related to X. stockiae, and group 4 consisting of 3 isolates related to X. miraniensis. The EPN host for isolates related to X. stockiae was S. websteri, and for X. miraniensis was S. khoisanae. The Photorhabdus species were identified as P. luminescens (n = 56) and P. asymbiotica (n = 1). Phylogenenic analysis divided P. luminescens into five groups. Groups 1 and 2 consisted of 45 and 8 isolates defined as subspecies hainanensis and akhurstii, respectively. One isolate was related to hainanensis and akhurstii, two isolates were related to laumondii, and one isolate was the pathogenic species P. asymbiotica subsp. australis. H. indica was the major EPN host for Photorhabdus. This study reveals the genetic diversity of Xenorhabdus and Photorhabdus spp. and describes new associations between EPNs and their bacterial symbionts in Thailand.  相似文献   

19.
We investigated the distribution, toxicity, morphology, and protein profiles of Bacillus thuringiensis isolates from forests in Korea to isolate naturally occurring novel B. thuringiensis. A total of 170 B. thuringiensis isolates were obtained from 832 samples producing spore and parasporal inclusion bodies. In toxicity tests for lepidopteran, dipteran, and coleopteran insects, 57.6% isolates were toxic only to Lepidoptera, 5.3% were toxic only to Diptera, and 24.1% were toxic to both Diptera and Lepidoptera. The remaining collections (13.0%) were not toxic to the tested insects. The shapes of the parasporal crystals produced in B. thuringiensis isolates were bipyramidal, spherical, ovoid, or irregular. As their toxicities varied with parasporal crystal shape, B. thuringiensis isolates possessing bipyramidal or irregular parasporal crystals were largely toxic to lepidopteran species whereas those producing spherical parasporal crystals were mainly toxic to dipteran species. B. thuringiensis toxic to both dipteran and lepidopteran insects contained 130- and 70-kDa parasporal crystals, whereas B. thuringiensis toxic to lepidopteran insects expressed 130-kDa parasporal crystals. The results suggest that forest areas in Korea are a rich source of B. thuringiensis and need to be further explored to discover novel B. thuringiensis isolates.  相似文献   

20.
To better understand the differences in the efficacy of entomopathogenic nematode species against white grub species, we are studying the various steps of the infection process of entomopathogenic nematodes into different white grub species using nematode species/strains with particular promise as white grub control agents. In this study we compared the attraction of the entomopathogenic nematodes Steinernema scarabaei (AMK001 strain), Steinernema glaseri (NC1 strain), Heterorhabditis zealandica (X1 strain), and Heterorhabditis bacteriophora (GPS11 strain) to third-instars of the scarabs Popillia japonica, Anomala orientalis, Cyclocephala borealis, and Rhizotrogus majalis, and late-instar greater wax moth, Galleria mellonella, larvae. Individual larvae were confined at the bottom of 5.5 cm vertical sand columns, nematodes added to the sand surface after 24 h, and nematodes extracted after another 24 h. Nematode attraction to hosts was strongly affected by nematode species but the effect of insect species varied with nematode species. S. glaseri had a high innate dispersal rate (i.e., in absence of insects) and was strongly attracted to insects without significant differences among insect species. S. scarabaei had a very low innate dispersal rate so that even a strong relative response to insects resulted in low absolute dispersal rates toward insects. S. scarabaei tended to be most attracted to G. mellonella and least attracted to C. borealis. H. zealandica had a high innate dispersal rate but only responded weakly to insects without significant differences among species. H. bacteriophora had limited innate dispersal and only weakly responded to insects with G. mellonella tending to be the most attractive and C. borealis the least attractive insect. It has to be noted that we cannot exclude that the use of different rearing hosts (A. orientalis and P. japonica larvae for S. scarabaei, G. mellonella larvae for the other nematodes) might have had an impact on the nematodes dispersal and relative attraction behavior. This study indicates that host attractiveness and nematode dispersal rates may contribute but do not play a major role in the variability in white grub susceptibility and/or nematode virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号