首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoplankton spatial distribution patterns in the Abra of Bilbao (a semienclosed coastal body of water) and adjacent shelf waters have been studied during June–July 1983 and May–June 1984. Small naked dinoflagellates, cryptophyceans and an unidentified nanoplankton component, were a common feature in all surveys. In July 1983 a dense bloom of nanoplankton developed inside the Abra which, in contrast to the community in the adhacent waters, contained high densities of small diatoms, naked dinoflagellates, cryptophyceans and the Haptophyta Phaeocystis pouchetii. Microplankton was mainly composed of dinoflagellates in July 1983, and of diatoms in June 1983 and May–June 1984. Microplankton abundance was highest in May–June 1984 and decreased from the shelf to the Abra. A principal component analysis performed separately on each cruise revealed the differences in the structure of the phytoplankton community between the Abra of Bilbao and the adjacent shelf waters.  相似文献   

2.
Phytoplankton biomass values in Tavropos Reservoir, ranging from 92 to 1071 mg m–3, are within a range characteristic of oligotrophic waters. The seasonal sequence of biomass shows three annual peaks, differing from the monoacmic pattern seen in oligotrophic lakes. This sequence was profoundly affected by changes in water withdrawal and inflow rates. Diatoms, cryptophytes, chrysophytes and dinoflagellates, in that order, were the major constituents of the reservoir phytoplankton. The succession, from diatoms and chrysophytes in late winter-spring, to centric diatoms in late spring-summer and again to diatom-chrysophytes in late autumn was similar to that in oligotrophic lakes.  相似文献   

3.
Dinoflagellate blooms in coastal upwelling systems are restricted to times and places with reduced exchange and mixing. The Rías Baixas of Galicia are four bays in the NW Iberian upwelling with these characteristics where harmful algal blooms (HABs) of dinoflagellates are common. These blooms are especially recurrent at the end of the upwelling season, when autumn downwelling amplifies accumulation and retention through the development of a convergence front in the interior of Rías. Because oceanic water enters the Rías during downwelling, it has been hypothesised that dinoflagellate blooms originate by the advection and subsequent accumulation of allochthonous populations. To examine this possibility, we studied the microplankton succession in relation to hydrographic variability in the Ría de Vigo (one of these four bays) along an annual cycle making use of a high sampling frequency. The results indicated that upwelling lasted from May to August, with downwelling prevailing in winter. Microplankton during upwelling, although dominated by diatoms, evidenced a progressive increase in the importance of dinoflagellates, which achieved maximum abundance at the end of the upwelling season. Thus, diatoms characterised the spring bloom, while diatoms and autochthonous dinoflagellates composed the autumn bloom. Diatoms dominated during the first moments of the autumn downwelling and dinoflagellates were more abundant later, after stronger downwelling removed diatoms from the water column. Since the dinoflagellates selected by downwelling belonged to the local community, it is concluded that advection of alien populations is not required to explain these autumn blooms.  相似文献   

4.
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences.  相似文献   

5.
The East China Sea (ECS) has long been considered an important monitoring site for oceanic ecosystem changes because many water currents and river discharges constantly influence this area. In this study, the community structure and diversity of phytoplankton in the northern part of the ECS adjacent to Jeju Island were explored using small subunit ribosomal RNA (SSU) pyrosequencing. We analysed samples collected from four stations from the surface and at 30-m and 50-m depths during April and September 2011. We observed spatial and temporal variations in the phytoplankton community. Among phytoplankton, diatoms and dinoflagellates constituted a major portion at all stations (60–90%). However, comparison of the April and September samples showed seasonal variation and shifts in the dispersion of diatom and dinoflagellates among stations. Among stations, diatoms dominated St. 1 and others were dominated by dinoflagellates. Furthermore, phylotypes of potentially toxin-producing genera such as Karlodinium, Heterocapsa, Gymnodinium, Gyrodinium, and Pseudo-nitzschia were dominant in this area.  相似文献   

6.
大亚湾澳头水域浮游植物群落结构及周年数量动态   总被引:16,自引:0,他引:16  
对1997年至1998年广东省大亚湾澳头水域的浮游植物群落进行调查和分析。结果发现浮游植物65属198种;硅藻在种类组成和数量上都比甲藻占有优势,存在春季和秋季高峰,主要优势类群依次是角毛藻、骨条藻、拟菱形藻等;甲藻只存在春季高峰,代表种类有裸甲藻、原甲藻等。主要优势种类的生长与调查水域的盐度没有明显关系,但全年水温的季节性变化对优势种类的消长影响显著。Simpson多样性指数、Shannon-Weaver多样性指数、均匀度的年平均值分别是0.611、2.107、0.557,多样性指数没有明显的季节变化规律和水平分布规律。    相似文献   

7.
The structure and ecophysiological characteristics of phytoplanktonassemblages were studied for 10 months in two lagoons of differentsalinity (40 and 90) in the saltern of Sfax (Tunisia), in relationto environmental factors. These assemblages were largely dominatedby diatoms and dinoflagellates, which accounted for >90%of total abundance. A principal components analysis clearlydifferentiated the observations made in the two lagoons, thedominant correlate being the salinity. Euryhaline species andparticularly diatoms developed preferentially in the less salinelagoon, and were largely replaced by stenohaline species representedby dinoflagellates, which were dominant in the more saline lagoon.Calculation of the pigment diversity index and the species diversityindex showed that the phytoplankton assemblages studied werepermanently in a juvenile stage, as the species restructuringrelated to environmental constraints did not allow them to reachthe climax stage at any given time in their development. Despitethe heavy constraint imposed by the salinity, it is evidentthat other environmental factors, e.g. temperature, play a rolein the regulation of the planktonic communities. Finally, thedifference in the size distribution of the total microbial biomass,estimated by the assay of particulate proteins, showed thatthere was a significant change in the community structure andthe planktonic trophic networks, in parallel with the increasein salinity.  相似文献   

8.
Temporal variations in the microbial community structure of plankton, which is composed of autotrophic and heterotrophic pico-, nano- and microplankton, were investigated during the austral summer of 2005/2006 under fast ice near Syowa Station, eastern Antarctica. Autotrophic algal populations were composed almost entirely of diatoms followed by phytoflagellates such as autotrophic dinoflagellates and cryptophytes. Among the microbial community, heterotrophic biomass was dominated by heterotrophic dinoflagellates and naked ciliates and finally exceeded autotrophic biomass. Qualitative microscopic analysis revealed that heterotrophic dinoflagellates were ingesting large number of diatoms. Synchronizing fluctuation of naked ciliates with phytoflagellates suggested a predator–prey relationship between them. Our results suggest that the pelagic food webs under the extensive ice-covered areas in coastal Antarctic regions are not short but complex.  相似文献   

9.
有关云南湖泊的研究长期集中于高原九大湖泊和水体富营养化评价,缺少对中小型水体及多重环境压力胁迫的综合研究.本文以大理西湖为例,结合沉积物记录与现代监测资料,甄别了气候变化和人类活动干扰下硅藻群落结构的长期响应模式及其驱动强度.结果表明: 20世纪50年代以前,大理西湖总体处于自然演化阶段;1950年代开始,围湖造田和流域改造的增强导致了水体营养水平增加、水动力条件改变,硅藻优势种由扁圆卵型藻替代为脆杆藻属;而1997年以来营养水平的快速增加和湖泊水动力的改变,促进了浮游藻类大量生长、底栖硅藻持续减少,同时水生植物快速退化、生态系统稳定性明显降低.因此,在长期流域开发的背景下,对云南中小型高山湖泊的有效保护需要评价流域开发类型、强度及全球变暖的长期影响.  相似文献   

10.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

11.
María Trigueros  Juan  Orive  Emma 《Hydrobiologia》2001,444(1-3):119-133
Seasonal changes in the diatom and dinoflagellate assemblages were examined in the neritic zone of the Urdaibai estuary (north Spain) with regard to some major physical and chemical variables during an annual cycle. A total of 81 diatoms and 38 dinoflagellates were identified and quantified during the study period. Both groups displayed a distinctive pattern of seasonal succession. The seasonal distribution of the Shannon index showed a trend of increasing values from the upper estuary to the lower neritic segment. The diatom diversity maxima were observed in February, April and September, and dinoflagellate maxima in April–May, July and October. Diatoms dominated the assemblages, reaching 1×106 cells l–1 from April to September. A shift from large diatoms and dinoflagellates to small bloom-forming taxa was observed during winter–early spring. A spring diatom bloom composed of Rhizosolenia spp. was observed in April, while small chain-forming taxa (chiefly Chaetoceros spp.) dominated from June to September. Cell maxima for both groups in late summer were produced by the diatoms Chaetoceros salsugineum and Skeletonema costatum, and by the dinoflagellates Heterocapsa pygmaea and Peridinium quinquecorne. Silicate availability by river supply and strong tidal-mixing of the water column seem to determine the year-round dominance of diatoms over dinoflagellates.  相似文献   

12.
Significant phenological shifts induced by climate change are projected within the phytoplankton community. However, projections from current Earth System Models (ESMs) understandably rely on simplified community responses that do not consider evolutionary strategies manifested as various phenotypes and trait groups. Here, we use a species-based modelling approach, combined with large-scale plankton observations, to investigate past, contemporary and future phenological shifts in diatoms (grouped by their morphological traits) and dinoflagellates in three key areas of the North Atlantic Ocean (North Sea, North-East Atlantic and Labrador Sea) from 1850 to 2100. Our study reveals that the three phytoplanktonic groups exhibit coherent and different shifts in phenology and abundance throughout the North Atlantic Ocean. The seasonal duration of large flattened (i.e. oblate) diatoms is predicted to shrink and their abundance to decline, whereas the phenology of slow-sinking elongated (i.e. prolate) diatoms and of dinoflagellates is expected to expand and their abundance to rise, which may alter carbon export in this important sink region. The increase in prolates and dinoflagellates, two groups currently not considered in ESMs, may alleviate the negative influence of global climate change on oblates, which are responsible of massive peaks of biomass and carbon export in spring. We suggest that including prolates and dinoflagellates in models may improve our understanding of the influence of global climate change on the biological carbon cycle in the oceans.  相似文献   

13.
The western Arctic Ocean is composed of two regions: the southern shelf and the northern basin, whereas the marine ecosystem structure is expected to vary between the regions, little information is available, particularly for the planktonic protist community. In this study, we surveyed the horizontal distribution of microprotists (diatoms, dinoflagellates and ciliates) at 59 stations in the western Arctic Ocean during September and October of 2010. The abundances of diatoms, dinoflagellates and ciliates were 0–138,640, 0–16,460 and 0–10,933 cells L?1, respectively, and all of the abundances were higher on the Chukchi Sea shelf. Cluster analysis based on abundance separated the microprotist community into five groups, which contain 25, 22, 6, 4 and 2 stations. The largest group was observed on the Chukchi Sea shelf, showing a high abundance predominated by diatoms (78 % of total abundance). The second group was observed from the East Siberian Sea to the Canada Basin, characterised by low abundance and ciliate dominance (36 % of total abundance). Because of the high abundance and predominance of diatoms, the former group is characterised by eutrophic waters, which are enhanced by the continuous inflow of the nutrient-rich Pacific Water through the Bering Strait. Due to the low abundance and the dominance of ciliates, the latter group is dominated by organisms of the microbial food web. The remaining three groups were smaller and located between the two large groups. The distribution of these three groups may be based on complex physical structures, such as the anticyclonic eddy near the shelf break.  相似文献   

14.
The extraction of bitumen from the Athabasca oil sands is rapidly expanding, and emission of sulphur and nitrogen oxides has substantially increased. To determine whether lakes downwind of this development in northwest Saskatchewan have been detrimentally impacted since development of the oil sands, a paleolimnological assessment of ten lakes was carried out. Analysis of diatom valves and inferences of diatom-inferred pH indicated that emissions have not resulted in widespread chronic acidification of acid-sensitive lakes ~80–250 km east and northeast of the oil sands development around Fort McMurray and Fort Mackay. However, one of the closest sites to the development indicated a slight decline in diatom-inferred pH, but the two next closest sites, both of which had higher alkalinity, did not show any evidence of acidification. There were also no consistent trends in the concentration or flux of total or individual priority pollutants including lead, mercury, copper, zinc and vanadium. The sedimentation rates in most lakes increased since the mid-1900s, along with increased flux of both diatoms and scaled chrysophytes. Subtle changes in the species assemblages of diatoms and increased flux of diatoms and chrysophyte scales are consistent with recent climate change in this region.  相似文献   

15.
Previous studies have shown that ciliate plankton is generally controlled by food resources (e.g., algae) and predators (e.g., metazooplankton). Among lakes with similar trophic levels but different distributions of phyto- and metazooplankton, the main forces acting on ciliate assemblages may be different. We investigated the relationship between ciliate communities and bottom-up versus top-down variables based on a survey of four subtropical eutrophic lakes (China). Two of the lakes (Chaohu, Taihu) are located on the Mid-lower Yangtze Plain near sea level, and the other two (Dianchi, Xingyunhu) on the Yunnan-Kweichow Plateau at 1700 m above sea level. Blooms of cyanobacteria developed during summer in Lakes Chaohu and Taihu and throughout the year in Lakes Dianchi and Xingyunhu. Ciliate functional feeding groups differed significantly between lakes. The results of canonical correspondence analysis (CCA) and variation partitioning showed that cyanobacteria significantly influence ciliate species, whereas ‘edible’ algae (cryptophytes, diatoms) and cladocerans were the important variables in explaining the ciliate community structure of Lakes Dianchi and Xingyunhu compared with Lakes Taihu and Chaohu. Our results highlight the importance of consistent cyanobacterial blooms in shaping the ciliate community in subtropical eutrophic shallow lakes by interacting with top-down and bottom-up factors.  相似文献   

16.
SUMMARY. The diversity of Eastern Rift Valley alkaline saline lakes is illustrated and their temporal fluctuations in ionic concentration are emphasized.
The standing crop densities of phytoplanktonic blue-green algae of the genus Spirulina and benthic diatoms were measured. Spirulina abundance was measured as dry mass density and the validity of the gravimatric estimates was checked by chlorophyll analysis and microscopic counting. Benthic diatom standing crops were assessed by chlorophyll determinations. Spirulina density is extremely variable in time and may fluctuate over more than an order of magnitude. High density blooms of Spirulina are not a common characteristic feature of these lakes. The causes of changes in Spirulina standing crop and the associated alterations in the structure of the primary producer community are discussed and three qualitative states which may occur are described.
Similar standing crops of benthic diatoms (mean 45 mg m−2 of chlorophyll-α) were found at all lakes wherever the water depth was shallow enough to allow light penetration to the sediment surface.  相似文献   

17.
Tryfon  E.  Moustaka-Gouni  M. 《Hydrobiologia》1997,351(1-3):61-75
The phytoplankton of Lake Mikri Prespa was studied atmonthly or biweekly intervals during the period May1990–September 1992. Its species composition,consisting of a great number of cyanophytes and a verysmall number of chrysophytes and desmids, may reflectthe eutrophic character of the lake. Moreover, themean annual biomass values (15.0 and 3.2 g m–3 inthe two years, respectively) and the maximum biomass(38.1, 6.4 and 9.6 g m–3), classify Mikri Prespaas a eutrophic lake. A tendency towards adouble-peaked pattern of biomass distribution in timewith one peak in autumn, composed mainly ofcyanophytes, and another in spring made up of diatoms,was observed. This pattern contrasts with the standardpattern in eutrophic, stratified temperate lakes,which exhibit a third biomass maximum in summer.Cyanophytes were the most important group in terms ofbiomass and were dominated by the species Microcystis aeruginosa, Microcystis wesenbergii,Anabaena lemmermannii var. minor and Aphanocapsa elachista var. conferta. Diatomsconstituted the second most important group, with main representative the species Cyclotellaocellata. Cyanophytes, diatoms, chlorophytes anddinophytes revealed annual periodicity whereas theother algal groups did not show any seasonality atall.The nanoplankton constituted an important part ofalgal biomass (38.9 and 49.9% in the two years,respectively) and revealed annual periodicity withmaximum values in winter and spring, mainly composedof diatoms and cryptophytes. Low temperature,increased rainfall and high DIN concentrations seemedto be the main factors influencing the seasonality.Although the percentage contribution of nanoplanktondecreased with the increase in total biomass,justifying the classification of Lake Mikri Prespaamong the eutrophic lakes, the nanoplankton biomassdid not correlate significantly with totalphytoplankton biomass.  相似文献   

18.
Phytoplankton structure in different lake types in central Finland   总被引:2,自引:0,他引:2  
Pertti Eloranta 《Ecography》1986,9(3):214-224
Phyloplankton structure and its relation to physical and chemical properties of the water was studied in 58 central Finnish lakes. The biomass ranged from 0.2 to 14.2 g m−3 and the number of taxa per sample ranged from 33 to 152. The lakes were grouped into 5 types according to their trophic state: eutrophic, dyseutrophic, mesotrophic, oligotrophic, and acid oligotrophic lakes. The average biomass in eutrophic lakes was 5.57 g m−3, in dyseutrophic 3.54 g m−3, 1.23 g m−3 in mesotrophic, 0.52 g m−3 in oligotrophic and 0.39 g −3 in acid oligotrophic lakes. The average number of taxa per sample in the corresponding lake types were 109. 1, 79.3, 97.9, 90.9 and 43.8, respectively. The phytoplankton communities in eutrophic lakes were characterized by blue-green algae (21.2% of total biomass) and green algae (18.7% of total biomass). In dyseutrophic lakes the proportion of green algae was much smaller (7.2% of total biomass) than in eutrophic lakes, whereas the proportion of diatoms and cryptophytes was higher (28.2 and 20.4% of total biomass, respectively). Chrysophytes dominated in the oligotrophic and mesotrophic lakes (27.3–39.9% of total biomass). The contribution of dinoflagellates to the total biomass was highest in the most oligotrophic acidified lakes and in those lakes the relative proportions of blue-green and green algae were much higher than in the typical oligotrophic lakes. The lakes were also grouped into 8 community types according to the dominating algal group. Cyanophyceae- and Chlorophyceae-types characterized the eutrophic lakes, whereas Chrysophyceae-Dinopheceae-type was typical for most oligotrophic lakes. The other 5 types occurred in mesotrophic and oligotrophic lakes but the physical and chemical properties of these lakes did not differ much.  相似文献   

19.
1. Rapid environmental change occurring in high‐latitude regions has the potential to cause extensive thawing of permafrost. Retrogressive thaw slumps are a particularly spectacular form of permafrost degradation that can significantly impact lake–water chemistry; however, to date, the effects on aquatic biota have received little attention. 2. We used a diatom‐based palaeolimnological approach featuring a paired lake study design to examine the impact of thaw slumping on freshwater ecosystems in the low Arctic of western Canada. We compared biological responses in six lakes affected by permafrost degradation with six undisturbed, reference lakes. 3. Slump‐affected lakes exhibited greater biological change than the paired reference systems, although all systems have undergone ecologically significant changes over the last 200 years. Four of the six reference systems showed an increase in the relative abundance of planktonic algal taxa (diatoms and scaled chrysophytes), the earliest beginning about 1900, consistent with increased temperature trends in this region. 4. The response of sedimentary diatoms to thaw slumping was understandably variable, but primarily related to the intensity of disturbance and associated changes in aquatic habitat. Five of the slump‐affected lakes recorded increases in the abundance and diversity of periphytic diatoms at the presumed time of slump initiation, consistent with increased water clarity and subsequent development of aquatic macrophyte communities. Slump‐affected lakes generally displayed lower nutrient levels; however, in one system, thaw slumping, induced by an intense fire at the site in 1968, ostensibly led to pronounced nutrient enrichment that persists today. 5. Our results demonstrate that retrogressive thaw slumping represents an important stressor to the biological communities of lakes in the western Canadian Arctic and can result in a number of limnological changes. We also show that palaeolimnological methods are effective for inferring the timing and response of aquatic ecosystems to permafrost degradation. These findings provide the first long‐term perspective on the biological response to permafrost thaw, a stressor that will become increasingly important as northern landscapes respond to climate change.  相似文献   

20.
Seasonal changes in freshwater phytoplankton communities have been extensively studied, but key drivers of phytoplankton in saline lakes are currently not well understood. Comparative lake studies of 19 prairie saline lakes in the northern Great Plains (USA) were conducted in spring and summer of 2004, with data gathered for a suite of limnological parameters. Nutrient enrichment assays for natural phytoplankton assemblages were also performed in spring and summer of 2006. Canonical correspondence analysis of 2004 data showed salinity (logCl), nitrogen, and phosphorus (N:P ratios) to be the main drivers of phytoplankton distribution in the spring, and phosphorus (C:P ratios), iron (logTFe), and nitrogen (logTN) as important factors in the summer. Despite major differences in nutrient limitation patterns (P-limitation in freshwater systems, N-limitation in saline systems), seasonal patterns of phytoplankton phyla changes in these saline lakes were similar to those of freshwater systems. Dominance shifted from diatoms in the spring to cyanobacteria in the summer. Nutrient enrichment assays (control, +Fe, +N, +P, +N+P) in 2006 indicated that nutrient limitation is generally more consistent within lakes than for individual taxa across systems, with widespread nitrogen and secondary phosphorus limitation. Understanding phytoplankton community structure provides insight into the overall ecology of saline lakes, and will assist in the future conservation and management of these valuable and climatically-sensitive systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号