首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-beta-Aminoisobutyrate served as an amino donor for purified beta-alanine-oxo-glutarate aminotransferase from rat liver when 2-oxoglutarate was employed as an amino acceptor, but the D-isomer did not. L-beta-Aminoisobutyrate acted as a competitive inhibitor with respect to beta-alanine and had a Ki of approximately 2.6 mM, which is the same value as the Km of 2.7 mM. When the crude extract was applied to a DEAE-Sepharose CL-6B column, L-beta-aminoisobutyrate aminotransferase and beta-alanine-oxo-glutarate aminotransferase activities were found in the same fractions with a single peak. Antiserum to rat liver beta-alanine-oxo-glutarate aminotransferase inhibited L-beta-aminoisobutyrate aminotransferase activity in rat liver in the same way as beta-alanine-oxo-glutarate aminotransferase activity.  相似文献   

2.
Among uracil derivatives investigated, 6-azauracil, 6-azathymine, and 5-iodouracil were found to be potent inhibitors of purified rabbit liver 4-aminobutyrate aminotransferase while 6-azauridine and 6-azauridine 5'-phosphate were not. The enzyme inhibited by 6-azauracil was reactivated by dialysis but not by addition of pyridoxal 5'-phosphate. 6-Azauracil acted as a non-competitive inhibitor with respect to beta-alanine as well as 2-oxoglutaric acid, and had a K1 of approximately 0.7 mM at pH 7.3. The kinetic data suggested that 2-oxoglutaric acid acted as an inhibitor as well as an amino acceptor for the enzyme; a catalytic site was associated with an apparent Km of 0.15 mM for 2-oxoglutaric acid and a low affinity site was associated with an I50 of approximately 5 mM for the 2-oxo acid. With inhibitory concentrations of 2-oxoglutaric acid as substrate the inhibitory effect of 6-azauracil was considerably diminished. From these findings, the inhibitory effect of 6-azauracil was revealed to be different from that of structural analogs of 4-aminobutyric acid showing that 6-azauracil is a new type of 4-aminobutyrate aminotransferase inhibitor.  相似文献   

3.
Adenosine 5'-phosphosulfate (APS) kinase, the second enzyme in the pathway of inorganic sulfate assimilation, was purified to near homogeneity from mycelium of the filamentous fungus, Penicillium chrysogenum. The enzyme has a native molecular weight of 59,000-60,000 and is composed of two 30,000-dalton subunits. At 30 degrees C, pH 8.0 (0.1 M Tris-chloride buffer), 5.5 microM APS, 5 mM MgATP, 5 mM excess MgCl2, and "high" salt (70-150 mM (NH4)2SO4), the most highly purified preparation has a specific activity of 24.7 units X mg of protein-1 in the physiological direction of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) formation. This activity is nearly 100-fold higher than that of any previously purified preparation of APS kinase. APS kinase is subject to potent substrate inhibition by APS. In the absence of added salt, the initial velocity at 5 mM MgATP plus 5 mM Mg2+ is maximal at about 1 microM APS and half-maximal at 0.2 and 4.4 microM APS. In the presence of 200 mM NaCl or 70-150 mM (NH4)2SO4, the optimum APS concentration shifts to 4-6 microM APS; the half-maximal values shift to 1-1.3 and 21-27 microM APS. The steady state kinetics of the reaction were investigated using a continuous spectrophotometric assay. The families of reciprocal plots in the range 0.25-5 mM MgATP and 0.8-5.1 microM APS are linear and intersect on the horizontal axis. Appropriate replots yield KmMgATP = 1.5 mM, KmAPS = 1.4 microM, and Vmax, = 38.7 units X mg of protein-1. Excess APS is an uncompetitive inhibitor with respect to MgATP (K1APS = 23 microM). PAPS, the product of the forward reaction, is also uncompetitive with MgATP. PAPS is not competitive with APS. In the reverse direction, the plots have the characteristics of a rapid equilibrium ordered sequence with MgADP adding before PAPS. The kinetic constants are KmPAPS = 8 microM, KiMgADP = 560 microM, and Vmaxr = 0.16 units X mg of protein-1. Iso-PAPS (the 2'-phosphate isomer of PAPS) is competitive with PAPS and uncompetitive with respect to MgADP (Ki = 6 microM). APS kinase is inactivated by phenylglyoxal, suggesting the involvement of an essential argininyl residue. MgATP or MgADP at 10 Ki protect against inactivation. APS or PAPS at 600 and 80 Km, respectively, are ineffective alone, but provide nearly complete protection in the presence of 0.1 Ki of MgADP or MgATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In Pseudomonas aeruginosa the initial enzyme of aromatic amino acid biosynthesis, 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase, has been known to be subject to feedback inhibition by a metabolite in each of the three major pathway branchlets. Thus, an apparent balanced multieffector control is mediated by L-tyrosine, by L-tryptophan, and phenylpyruvate. We have now resolved DAHP synthase into two distinctive regulatory isozymes, herein denoted DAHP synthase-tyr (Mr = 137,000) and DAHP synthase-trp (Mr = 175,000). DAHP synthase-tyr comprises greater than 90% of the total activity. L-Tyrosine was found to be a potent effector, inhibiting competitively with respect to both phosphoenolpyruvate (Ki = 23 microM) and erythrose 4-phosphate (Ki = 23 microM). Phenylpyruvate was a less effective competitive inhibitor: phosphoenolpyruvate (Ki = 2.55 mM) and erythrose 4-phosphate (Ki = 1.35 mM). DAHP synthase-trp was found to be inhibited noncompetitively by L-tryptophan with respect to phosphoenolpyruvate (Ki = 40 microM) and competitively with respect to erythrose 4-phosphate (Ki = 5 microM). Chorismate was a relatively weak competitive inhibitor: phosphoenolpyruvate (Ki = 1.35 mM) and erythrose 4-phosphate (Ki = 2.25 mM). Thus, each isozyme is strongly inhibited by an amino acid end product and weakly inhibited by an intermediary metabolite.  相似文献   

5.
The nucleotide ATP was shown to be a reversible inhibitor of partially purified gamma-aminobutyrate aminotransferase isolated from mouse brain. This inhibition was of the competitive type with respect to the substrate, gamma-aminobutyric acid (Ki = 3.7 +/- 0.6 mM), but was noncompetitive with respect to both the second substrate alpha-ketoglutarate and the cofactor pyridoxal 5'-phosphate. Two analogues of ATP, ADP and GTP, also gave rise to an inhibition gamma-aminobutyrate aminotransferase that was similar to that produced by ATP. These results are consistent with the view that mouse brain gamma-aminobutyric acid aminotransferase could be under regulatory control by ATP and certain other nucleotides within the mitochondria.  相似文献   

6.
1. Pig heart pyruvate dehydrogenase complex is inactivated by phosphorylation (MgATP2-) of an alpha-chain of the decarboxylase component. Three serine residues may be phosphorylated, one of which (site 1) is the major inactivating site. 2. The relative rates of phosphorylation are site 1 greater than 2 greater than site 3. 3. The kinetics of the inactivating phosphorylation were investigated by measuring inactivation of the complex with MgATP2-. The apparent Km for the Mg complex of ATP was 25.5 microM; ADP was a competitive inhibitor (Ki 69.8 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 2.8 microM). Inactivation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA. 4. The kinetics of additional phosphorylations (predominantly site 2 under these conditions) were investigated by measurement of 32P incorporation into non-radioactive pyruvate dehydrogenase phosphate containing 3-6% of active complex, and assumed from parrallel experiments with 32P labelling to contain 91% of protein-bound phosphate in site 1 and 9% in site 2. 5. The apparent Km for the Mg complex of ATP was 10.1 microM; ADP was a competitive inhibitor (Ki 31.5 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 1.1 mM). 6. Incorporation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA, although it was less marked at the highest ratios.  相似文献   

7.
1. Baboon ferrochelatase was purified to apparent homogeneity. 2. The pH optimum was 7.85 and the pI 5.3. 3. The estimated molecular weight was 205 K made up by two 50 + 60 K heterodimers. 4. The Km values for proto- and mesoporphyrin were 18.5 and 10.8 microM with iron as co-substrate. With cobalt as co-substrate the Km values were 34.5 and 10.4 microM, respectively. The mean Km value for iron was 2.2 microM while cobalt acted as a complete inhibitor. 5. Lead played a dual role that of both pseudo substrate and inhibitor. As shown by inhibitor kinetics, Pb acted as a two-step two-site parabolic competitive inhibitor. The mean Ki value at low Pb levels was 0.65 mM and at high levels 0.17 mM. 6. Substrate inhibition occurred above 36 microM for proto- and 44 microM for mesoporphyrin with iron as co-substrate. For iron, with mesoporphyrin as co-substrate it occurred above 29 microM.  相似文献   

8.
p-nitrophenyl phosphatase activity is high in porcine neutrophils and was found in plasma membrane and granule fractions isolated from sucrose density gradients after nitrogen cavitation to disrupt the cells. Very little activity was found in the cytosol. The enzyme has optimum activity at alkaline pHs with a pH optimum of 10.3. The pH profile was fairly broad with activity still remaining at physiological pH. Orthovanadate was shown to be a potent competitive inhibitor of the enzyme with a Ki of 14 microM. Phosphate also inhibited but at millimolar concentrations and the two inhibitors bind in a mutually exclusive fashion. Evidence from experiments using divalent ion chelators and zinc ions suggested that the phosphatase is a zinc metalloenzyme. Beryllium was found to be a very potent, non-competitive inhibitor of the neutrophil enzyme (Ki = 1.1 microM). Levamisole and theophylline were both shown to be uncompetitive inhibitors of the porcine phosphatase (Ki = 0.2 mM and 1.2 mM respectively). The neutrophil phosphatase was inhibited by L-homoarginine but unaffected by L-phenylalanine and L-glutamate.  相似文献   

9.
1-Aminooxy-3-aminopropane was shown to be a potent competitive inhibitor (Ki = 3.2 nM) of homogenous mouse kidney ornithine decarboxylase, a potent irreversible inhibitor (Ki = 50 microM) of homogeneous liver adenosylmethionine decarboxylase and a potent competitive (Ki = 2.3 microM) of homogeneous bovine brain spermidine synthase. It did not inhibit homogeneous bovine brain spermine synthase and it did not serve as a substrate for spermidine synthase. The compound did not inhibit tyrosine aminotransferase, alanine aminotransferase or aspartate aminotransferase, which are pyridoxal phosphate-containing enzymes like ornithine decarboxylase. The inactivation of adenosylmethionine decarboxylase was partially prevented by pyruvate, which is the coenzyme of adenosylmethionine decarboxylase, and by the substrate, adenosylmethionine. 1-Aminooxy-3-aminopropane at 0.5 mM concentration inhibited the growth of HL-60 promyelocytic leukemia cells and this inhibition was prevented by spermidine but not by putrescine.  相似文献   

10.
Koningic acid, a sesquiterpene antibiotic, is a specific inhibitor of the enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). In the presence of 3 mM of NAD+, koningic acid irreversibly inactivated the enzyme in a time-dependent manner. The pseudo-first-order rate constant for inactivation (kapp) was dependent on koningic acid concentration in saturate manner, indicating koningic acid and enzyme formed a reversible complex prior to the formation of an inactive, irreversible complex; the inactivation rate (k 3) was 5.5.10(-2) s-1, with a dissociation constant for inactivation (Kinact) of 1.6 microM. The inhibition was competitive against glyceraldehyde 3-phosphate with a Ki of 1.1 microM, where the Km for glyceraldehyde 3-phosphate was 90 microM. Koningic acid inhibition was uncompetitive with respect to NAD+. The presence of NAD+ accelerated the inactivation. In its absence, the charcoal-treated NAD+-free enzyme showed a 220-fold decrease in apparent rate constant for inactivation, indicating that koningic acid sequentially binds to the enzyme next to NAD+. The enzyme, a tetramer, was inactivated when maximum two sulfhydryl groups, possibly cysteine residues at the active sites of the enzyme, were modified by the binding of koningic acid. These observations demonstrate that koningic acid is an active-site-directed inhibitor which reacts predominantly with the NAD+-enzyme complex.  相似文献   

11.
Indomethacin inhibition of glutathione S-transferases   总被引:4,自引:0,他引:4  
Indomethacin inhibited rat liver glutathione S-transferases (EC 2.5.1.18). Its inhibition was non-competitive with respect to 3,4-dichloronitrobenzene with an apparent Ki of 5.3 X 10(-5) M and uncompetitive with respect to glutathione with an apparent Ki of 4.0 X 10(-5) M. 4-Chlorobenzoic acid and 5-methoxy-2-methylindole-3-acetic acid, two metabolites of indomethacin, were weak inhibitors of the enzymes. On the other hand, meclofenamic acid was a competitive inhibitor of the enzymes with an apparent Ki of 3.0 X 10(-4) M. Possible significance of these findings in arachidonic acid metabolism is discussed.  相似文献   

12.
Saccharomyces cerevisiae mitochondria contain an NADH:Q6 oxidoreductase (internal NADH dehydrogenase) encoded by NDI1 gene in chromosome XIII. This enzyme catalyzes the transfer of electrons from NADH to ubiquinone without the translocation of protons across the membrane. From a structural point of view, the mature enzyme has a single subunit of 53 kDa with FAD as the only prosthetic group. Due to the fact that S. cerevisiae cells lack complex I, the expression of this protein is essential for cell growth under respiratory conditions. The results reported in this work show that the internal NADH dehydrogenase follows a ping-pong mechanism, with a Km for NADH of 9.4 microM and a Km for oxidized 2,6-dichorophenolindophenol (DCPIP) of 6.2 microM. NAD+, one of the products of the reaction, did not inhibit the enzyme while the other product, reduced DCPIP, inhibited the enzyme with a Ki of 11.5 microM. Two dead-end inhibitors, AMP and flavone, were used to further characterize the kinetic mechanism of the enzyme. AMP was a linear competitive inhibitor of NADH (Ki = 5.5 mM) and a linear uncompetitive inhibitor of oxidized DCPIP (Ki = 11.5 mM), in agreement with the ping-pong mechanism. On the other hand, flavone was a partial inhibitor displaying a hyperbolic uncompetitive inhibition regarding NADH, and a hyperbolic noncompetitive inhibition with respect to oxidized DCPIP. The apparent intercept inhibition constant (Kii = 5.4 microM) and the slope inhibition constant (Kis = 7.1 microM) were obtained by non linear regression analysis. The results indicate that the ternary complex F-DCPIPox-flavone catalyzes the reduction of DCPIP, although with lower efficiency. The effect of pH on Vmax was studied. The Vmax profile shows two groups with pKa values of 5.3 and 7.2 involved in the catalytic process.  相似文献   

13.
The transport kinetics of gamma-aminobutyric acid (GABA), taurine, and beta-alanine in addition to the mutual inhibition patterns of these compounds were investigated in cultures of neurons and astrocytes derived from mouse cerebral cortex. A high-affinity uptake system for each amino acid was demonstrated both in neurons (Km GABA = 24.9 +/- 1.7 microM; Km Tau = 20.0 +/- 3.3 microM; Km beta-Ala = 73.0 +/- 3.6 microM) and astrocytes (Km GABA = 31.4 +/- 2.9 microM, Km Tau = 24.7 +/- 1.3 microM; Km beta-Ala = 70.8 +/- 3.6 microM). The maximal uptake rates (Vmax) determined were such that, in neurons, Vmax GABA greater than Vmax beta-Ala = Vmax Tau, whereas in astrocytes, Vmax beta-Ala greater than Vmax Tau = Vmax GABA. Taurine was found to inhibit beta-alanine uptake into neurons and astrocytes in a competitive manner, with Ki values of 217 microM in neurons and 24 microM in astrocytes. beta-Alanine was shown to inhibit taurine uptake in neurons and astrocytes, also in a competitive manner, with Ki values of 72 microM in neurons and 71 microM in astrocytes. However, beta-alanine was found to be a weak noncompetitive inhibitor of neuronal and astrocytic GABA uptake, whereas in reverse experiments, GABA displayed weak noncompetitive inhibition of neuronal and astrocytic uptake of beta-alanine. Likewise, taurine was a weak noncompetitive inhibitor of GABA uptake in neurons and similarly, GABA was a weak noncompetitive inhibitor of taurine uptake into neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
With the use of a continuous spectrophotometric assay and initial rates determined by the method of Waley [Biochem. J. (1981) 193, 1009-1012] methotrexate was found to be a non-competitive inhibitor, with Ki(intercept) = 72 microM and Ki(slope) = 41 microM, of 5-aminoimidazole-4-carboxamide ribotide transformylase, whereas a polyglutamate of methotrexate containing three gamma-linked glutamate residues was a competitive inhibitor, with Ki = 3.15 microM. Pentaglutamates of folic acid and 10-formylfolic acid were also competitive inhibitors of the transformylase, with Ki values of 0.088 and 1.37 microM respectively. Unexpectedly, the pentaglutamate of 10-formyldihydrofolic acid was a good substrate for the transformylase, with a Km of 0.51 microM and a relative Vmax. of 0.72, which compared favourably with a Km of 0.23 microM and relative Vmax. of 1.0 for the tetrahydro analogue. An analysis of the progress curve of the transformylase-catalysed reaction with the above dihydro coenzyme revealed that the pentaglutamate of dihydrofolic acid was a competitive product inhibitor, with Ki = 0.14 microM. The continuous spectrophotometric assay for adenosine deaminase based on change in the absorbance at 265 nm was shown to be valid with adenosine concentrations above 100 microM, which contradicts a previous report [Murphy, Baker, Behling & Turner (1982) Anal. Biochem. 122, 328-337] that this assay was invalid above this concentration. With the spectrophotometric assay, 5-aminoimidazole-4-carboxamide riboside was found to be a competitive inhibitor of adenosine deaminase, with (Ki = 362 microM), whereas the ribotide was a competitive inhibitor of 5'-adenylate deaminase, with Ki = 1.01 mM. Methotrexate treatment of susceptible cells results in (1) its conversion into polyglutamates, (2) the accumulation of oxidized folate polyglutamates, and (3) the accumulation of 5-aminoimidazole-4-carboxamide riboside and ribotide. The above metabolic events may be integral elements producing the cytotoxic effect of this drug by (1) producing tighter binding of methotrexate to folate-dependent enzymes, (2) producing inhibitors of folate-dependent enzymes from their tetrahydrofolate coenzymes, and (3) trapping toxic amounts of adenine nucleosides and nucleotides as a result of inhibition of adenosine deaminase and 5'-adenylate deaminase respectively.  相似文献   

15.
Using homogenates of catfish whole-brain in an isotonic medium, we observed an accumulation of [3H]GABA that was temperature-sensitive and was dependent on the presence of sodium ions, the optimum concentration of which was 75 mM. A kinetic analysis showed that the [3H]GABA uptake mechanism became saturated with increasing GABA concentrations. A high-affinity system, only, was evident whose Km was calculated as 12 microM. Four structural analogues of GABA were found to be competitive inhibitors of uptake, and Ki values were determined. Nipecotic acid (Ki = 1.8 microM) and guvacine (Ki = 3.9 microM) were the most potent compounds, however 2,4-diaminobutyric acid (Ki = 8.9 microM) and beta-alanine (Ki = 55 microM) also had an effect. The characteristics of the uptake mechanism in catfish brain that we have studied are similar to those reported for uptake by mammalian brain except that in the latter, both a high- and a low-affinity transport processes are present. Our data, taken together with what is already known, strongly suggest that the biochemistry of the GABA system in lower vertebrates does not differ significantly from that in mammals.  相似文献   

16.
Bovine mammary fatty acid synthetase was inhibited by approximately 50% by 40 microM methylmalonyl-CoA; this inhibition was competitive with respect to malonyl-CoA (apparent Ki = 11 microM). Similarly, 6.25 microM coenzyme A inhibited the synthetase by 35% and this inhibition was again competitive (apparent Ki = 1.7 microM). Apparent Km for malonyl-CoA was 29 microM. The short-chain dicarboxylic acids malonic, methylmalonic and ethylmalonic at high concentrations (160-320 microM) and ATP (5 mM) enhanced the synthetase activity by about 50% respectively; the activating effects of methylmalonic acid and ATP on the synthetase were additive. Methylmalonyl-CoA at 50 microM concentration inhibited the partially purified acetyl-CoA carboxylase uncompetitively by 10% and the propionyl-CoA carboxylase activity of the enzyme preparation competitively (apparent Ki = 21 microM) by 40%. Malonyl-CoA also inhibited the acetyl-CoA carboxylase activity competitively (apparent Ki = 7 microM) by 35% and the propionyl-CoA carboxylating activity of the preparation competitively (apparent Ki = 4 microM) by 82%. The possibility that methylmalonyl-CoA may be a causal factor in the aetiology of the low milk-fat syndrome in high yielding dairy cows is discussed.  相似文献   

17.
Inositol-1,4-bisphosphate 4-phosphohydrolase (inositol-1,4-bisphosphatase) was highly purified from a soluble fraction of rat brain. On SDS-polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band and its molecular weight was estimated to be 42000. The isoelectric point of the enzyme was 4.3. The enzyme specifically hydrolyzed the 4-phosphomonoester linkage of inositol 1,4-bisphosphate. The Km value for inositol 1,4-bisphosphate was 30 microM, and it required Mg2+ for activity. Ca2+ was a competitive inhibitor with a Ki value of 60 microM as regards the Mg2+ binding. Li+, which is known to be a strong inhibitor of inositol 1-phosphatase (EC 3.1.3.25), inhibited the enzyme activity and caused 50% inhibition at a concentration of 1 mM (IC50 = 1 mM). Li+ was an uncompetitive inhibitor of substrate binding with a Ki value of 0.6 mM. These inhibitory parameters of Li+ were quite similar to those for inositol 1-phosphatase (IC50 = 1 mM, Ki = 0.3 mM). Thus, the effect of Li+ on decreasing the free inositol level with a subsequent decrease in agonist-sensitive phosphoinositides, is caused by its inhibition of multiple enzymes involved in conversion of inositol 1,4-bisphosphate to inositol.  相似文献   

18.
1-2H-Phthalazine hydrazone (hydralazine; HYD), 2-1H-pyridinone hydrazone (2-hydrazinopyridine; HP), 2-quinoline-carboxylic acid (QCA), 1-isoquinolinecarboxylic acid (IQCA), 2,2'-bi-1H-imidazole (2,2'-biimidazole; BI), and 1H-imidazole-4-acetic acid (imidazole-4-acetic acid; IAA) directly and reversibly inhibit homogeneous soluble bovine dopamine beta-hydroxylase (3,4-dihydroxyphenethylamine, ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1). HYD, QCA and IAA show competitive allosteric inhibition of dopamine beta-hydroxylase with respect to ascorbate (Kis = 5.7(+/- 0.9) microM, 0.14(+/- 0.03) mM, 0.80(+/- 0.20) mM; nH = 1.4(+/- 0.1), 1.8(+/- 0.4), 2.8(+/- 0.6), respectively). HYD and IAA show slope and intercept mixed-type allosteric inhibition of dopamine beta-hydroxylase with respect to tyramine. QCA shows allosteric uncompetitive inhibition of dopamine beta-hydroxylase with respect to tyramine. HP, BI and IQCA all show linear competitive inhibition (Kis = 1.9(+/- 0.3) microM, 21(+/- 6) microM, and 0.9(+/- 0.3) microM, respectively) with respect to ascorbate. HP and BI show linear mixed-type while IQCA shows linear uncompetitive inhibition of dopamine beta-hydroxylase with respect to tyramine. In the presence of HP, HYD or IAA intersecting double-reciprocal plots of the initial velocity as a function of tyramine concentration at differing fixed levels of ascorbate are observed. These findings are consistent with a uni-uni-ping-pong-ter-bi kinetic mechanism for dopamine beta-hydroxylase that involves a ternary enzyme-ascorbate-tyramine-oxygen complex. The results for HYD, QCA and IAA are the first examples of allosteric inhibitor interactions with dopamine beta-hydroxylase.  相似文献   

19.
Onion and garlic essential oils were previously shown to inhibit mouse skin tumor promotion, as were the enzymes, lipoxygenase, and cyclooxygenase. In the present study, the inhibition of soybean lipoxygenase (EC 1.13.11.12) by onion and garlic components and related compounds was investigated. The IC50 values as well as the kinetic inhibition constants were determined for the most active compounds. Di-(1-propenyl) sulfide, an analog of the substrate moiety required for oxygenase action, was the only irreversible inhibitor observed with Ki = 59 microM and k3 = 0.53/min. Inhibition in the presence of substrate was uncompetitive at 88 and 132 microM linoleic acid with Ki = 129 microM. At 173 microM linoleic acid, however, inhibition was competitive with Ki = 66 microM. Dially trisulfide, allyl methyl trisulfide, and diallyl disulfide were competitive inhibitors, while 1-propenylpropyl sulfide and (E, Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide (ajoene) were mixed inhibitors. Nordihydroguaiaretic acid (NDGA), the most potent lipoxygenase inhibitor, was a competitive inhibitor with Ki = 0.29 microM. The results indicate a relative potency of inhibition for structural features in the following order: di(1-propenyl) sulfide greater than an alkenyl trisulfide greater than an alkenyl disulfide. Di(n-propyl) disulfide, a major onion oil component, inhibited neither lipoxygenase nor promotion. Di(1-propenyl) sulfide and ajoene inhibited both. This suggests that the inhibition of lipoxygenase may be involved in antipromotion.  相似文献   

20.
Hydrogen peroxide inhibited both carboxylase and oxygenase activities of purified, and fully activated, spinach ribulose-1,5-bisphosphate (RuP2) carboxylase-oxygenase. Inhibition of the carboxylase reaction was mixed competitive with respect to CO2 (Ki = 1.2 mM) and uncompetitive with respect to RuP2. For the oxygenase reaction, H2O2 was a competitive inhibitor with respect to O2 (Ki = 2.1 mM) and an uncompetitive inhibitor with respect to RuP2. H2O2 did not alter the stoichiometry between CO2 and RuP2 in the carboxylase reaction, indicating that H2O2 was not itself a substrate for the enzyme. RuP2 decreased the rate of deactivation of the enzyme which occurred at limiting CO2 concentrations. H2O2 greatly enhanced this stabilizing effect of RuP2 but had no effect on the rate of deactivation in the absence of RuP2. The inhibitory and stabilizing effects of H2O2 varied similarly with H2O2 concentration. These instantaneous, reversible effects of H2O2 were readily distinguishable from an irreversible inhibitory effect which occurred quite slowly, and in the absence of RuP2. These observations are discussed in relation to the enzyme's catalytic mechanism and its activation-deactivation transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号