首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
细胞色素c的前体 -脱血红素细胞色素c(Apocyt.c)在细胞质中核糖体合成 ,之后跨线粒体膜运送 ,在线粒体内、外膜间隙中经酶催化与血红素Heme结合形成成熟型的细胞色素c定位于线粒体内膜外侧  相似文献   

2.
本文报道使用高渗氯化钠溶液制备脂肪细胞空泡。得到的空泡用Harris 苏木素染色不着色,说明空泡中基本上不含细胞核。用苏丹Ⅲ染色呈极浅的橙红色,表明空泡中含少量脂质。细胞标志酶活力测定表明:空泡的碱性磷酸酯酶活力比完整细胞的高3.5倍,琥珀酸脱氢酶活力和还原辅酶Ⅱ-细胞色素c 还原酶活力均极低。空泡中DNA 含量几乎测不出。以上结果均表明这样得到的空泡,细胞器的含量很低。经测定,空泡对半夏蛋白及胰岛素的结合能力与完整细胞相同。根据组织化学鉴定、细胞器标志酶及细胞膜受体测定说明,用高渗法制备的脂肪细胞空泡主要成分是细胞膜,且保持了膜上受体的活力,适用于膜受体的结构和功能的研究。  相似文献   

3.
本文报道使用高渗氯化钠溶液制备脂肪细胞空泡。得到的空泡用Harris苏木素染色不着色,说明空泡中基本上不含细胞核。用苏丹Ⅲ染色呈极浅的橙红色,表明空泡中含少量脂质。细胞标志酶活力测定表明:空泡的碱性磷酸酯酶活力比完整细胞的高3.5倍,琥珀酸脱氢酶活力和还原辅酶Ⅱ-细胞色素c还原酶活力均极低。空泡中DNA含量几乎测不出。以上结果均表明这样得到的空泡,细胞器的含量很低。经测定,空泡对半夏蛋白及胰岛素的结合能力与完整细胞相同。根据组织化学鉴定、细胞器标志酶及细胞膜受体测定说明,用高渗法制备的脂肪细胞空泡主要成分是细胞膜,且保持了膜上受体的活力,适用于膜受体的结构和功能的研究。  相似文献   

4.
目的探讨灵芝孢子和一氧化氮合酶 (NOS)抑制剂L-NNA联合应用对大鼠脊髓半横断后受损伤的背核线粒体细胞色素氧化酶活性的影响.方法将20只SD成年雌性大鼠(200-250g)行右侧T11脊髓半横断30d后,对受损伤脊髓做细胞色素氧化酶酶组化染色;用图像分析方法检测L1脊髓段背核线粒体细胞色素氧化酶活性的变化,用酶组化电镜技术观察L1脊髓段背核细胞色素氧化酶活性的分布位置.结果与对照组相比,L-NNA组和灵芝孢子组L1脊髓损伤侧背核线粒体细胞色素氧化酶活性有所提高,灵芝孢子 L-NNA组损伤侧背核线粒体细胞色素氧化酶活性最大.各组L1脊髓背核细胞色素氧化酶活性均出现在线粒体内,具有细胞色素氧化酶活性的线粒体存在所有神经元胞体及其树突和轴突内,也存在于神经胶质细胞胞体及其突起内.结论灵芝孢子和L-NNA均可提高大鼠脊髓半横断后受损伤的脊髓背核线粒体细胞色素氧化酶的活性,两者联合应用更能提高受损伤的背核线粒体细胞色素氧化酶的活性.  相似文献   

5.
用缺c心肌制剂进行实验,在低磷酸浓度下,细胞色素c对琥珀酸氧化酶系及NADH氧化酶系的米氏常数都很小(K_m=0.4μM),比高磷酸浓度时低50倍左右,与测定条件下内源细胞色素c的浓度接近。血清白蛋白,组氨酸及某些金属螯合剂如:乙二胺四乙酸钠、8-羟基喹啉、邻二氮菲以及焦磷酸等均可以提高重组合琥珀酸氧化酶系在低磷酸测定系统中的活力,达到高磷酸浓度下细胞色素c饱和时的水平,但是并不影响细胞色素c与这二个酶系的结合能力。在适当条件下,外源细胞色素c可以重新掺入缺c的心肌制剂,并且重组合的心肌制剂似不再与氰化钾反应。  相似文献   

6.
线粒体在细胞的生命活动过程中承担重要作用,线粒体通过自身质量控制维持线粒体健康.线粒体囊泡作为一种新型的线粒体质量控制机制,通过靶向到不同的细胞器,调控线粒体内氧化/受损蛋白的降解;激活免疫系统,发挥抗原呈递和杀灭细菌的功能,从而维持线粒体以及细胞的稳态平衡.本文就线粒体囊泡的调控机制以及生物学功能的研究进展进行综述.  相似文献   

7.
Bcl—2家族蛋白与细胞凋亡   总被引:32,自引:2,他引:30  
Bcl 2家族蛋白是在细胞凋亡过程中起关键性作用的一类蛋白质。在线粒体上 ,Bcl 2家族蛋白通过与其他凋亡蛋白的协同作用 ,调控线粒体结构与功能的稳定性 ,发挥着细胞凋亡“主开关”的作用。Bcl 2家族包括两类蛋白质 :一类是抗凋亡蛋白 ,另一类是促凋亡蛋白。在细胞凋亡时 ,Bcl 2家族中的促凋亡蛋白成员发生蛋白质的加工修饰 ,易位到线粒体的外膜上 ,引起细胞色素c、凋亡诱导因子等其他促凋亡因子的释放 ,导致细胞凋亡 ;而平时被隔离在线粒体等细胞器内的该家族的抗凋亡蛋白成员则抑制细胞色素c和凋亡诱导因子等促凋亡因子的释放 ,具有抑制细胞凋亡的功能。但一旦这类抗凋亡蛋白成员与激活的促凋亡蛋白发生相互作用后 ,便丧失了对细胞凋亡的抑制作用 ,造成线粒体等细胞器的功能丧失和细胞器内促凋亡因子的释放 ,导致细胞凋亡。现以Bcl 2家族调控细胞凋亡的最新研究进展为基础 ,对Bcl 2家族成员及其蛋白质结构、分布和调控细胞凋亡的分子机制进行综述。  相似文献   

8.
昆虫线粒体发生的生化和亚显微结构的研究   总被引:1,自引:3,他引:1  
线粒体在细胞中的发生目前有各种观点的争论,其理论意义涉及到真核细胞的起源和进化、染色体和线粒体两个遗传体系之间的相互关系以及生物膜合成和组装机理等。我们对处于分化中的昆虫胸肌线粒体的观察结果是:(1)对粘虫变态期的呼吸和细胞色素氧化酶活力测定表明蛹期第8天的组织形成阶段是胸肌细胞分化和其线粒体发生的开始。电镜观察表明,线粒体形成分两个阶段:由颗粒结构(可能是酶蛋白与脂的复合体)装配成膜片和膜泡;由膜泡分化出内嵴,进而发育为线粒体。(2)QO2值,P/O比和ATP酶活力的出现与膜结构的分化发育相平行。α-甘油磷酸氧化酶系统比谷氨酸氧化酶系统装配早;电子传递酶系比磷酸化酶系装配早。(3)蝗虫胸肌分化过程的电镜观察证明;先形成内膜小泡(直径约0.1微米左右),后形成外膜,组成简单线粒体;后者进一步分化发育为成熟线粒体。(4)QO2值,P/O比和ATP酶活力与膜结构分化发育相平行。ATP酶的出现与能量转涣功能呈平行关系。膜形成早期和“幼稚”线粒体阶段,ATP酶尚未装配。(5)综合上述结果:线粒体膜由非膜结构逐步组装形成,线粒体内膜的各酶系组装次序不同步,线粒体DNA控制合成的膜蛋白在膜结构形成中似乎起核心和骨架作用;线粒体总组装过程在不同细胞中表现为多种途径和方式。  相似文献   

9.
(一)我們利用陽離子交換劑吸附一次的簡單方法可以大量製備酵母細胞色素c,其產量為240毫克/千克乾酵母。 (二)用上法初步純製的酵母細胞色素c,在pH 6.3的電泳場內分成兩個有色部分,都具有細胞色素c的性質。利用硫酸銨部分沉澱法,可分出電泳均一的合量較多的一部分——酵母細胞色素c甲。兩部分細胞色素c對牛心琥珀酸氧化酶系和輔酶Ⅰ細胞色素c還原酶系的作用相同。 (三)電泳均一的酵母細胞色素c甲的合鐵量為0.43%,在還原狀態時在550 mμ的克分子消光係數為2.81×10~4。酵母正鐵和亞鐵細胞色素c甲230—600 mμ的吸收光譜和合鐵量0.43%的牛心細胞色素c的光譜很相像。 (四)酵母細胞色素c甲對哺乳類動物心肌酶系的影響,在琥珀酸氧化酶系及輔酶Ⅰ細胞色素c還原酶系中其活力比哺乳類動物本身細胞色素c的活力為高。酵母亞鐵細胞色素c和哺乳類動物心肌亞鐵細胞色素c在哺乳類動物心肌細胞色素氧化酶系中氧化速度的差別不大。 (五)酵母細胞色素c甲能變成猪心肌肉的“內源”細胞色素c。由此製得之心肌製劑其琥珀酸氧化酶系的活力比猪心肌製劑的該酶系活力要大。  相似文献   

10.
细胞色素c的前体蛋白——脱血红素细胞色素c是在细胞质中合成后运入线粒体的. 结合人工合成多肽及完整分子的缺失突变体探索了脱血红素细胞色素c跨膜转运中的关键肽段, 结果表明, 无论在单分子层插膜, 还是在与脂质体、线粒体的相互作用中, 脱血红素细胞色素c的68~88肽段都起着关键作用.  相似文献   

11.
The import of cytochrome c into Neurospora crassa mitochondria was examined at distinct stages in vitro. The precursor protein, apocytochrome c, binds to mitochondria with high affinity and specificity but is not transported completely across the outer membrane in the absence of conversion to holocytochrome c. The bound apocytochrome c is accessible to externally added proteases but at the same time penetrates far enough through the outer membrane to interact with cytochrome c heme lyase. Formation of a complex in which apocytochrome c and cytochrome c heme lyase participate represents the rate-limiting step of cytochrome c import. Conversion from the bound state to holocytochrome c, on the other hand, occurs 10-30-fold faster. Association of apocytochrome c with cytochrome c heme lyase also takes place after solubilizing mitochondria with detergent. We conclude that the bound apocytochrome c, spanning the outer membrane, forms a complex with cytochrome c heme lyase from which it can react further to be converted to holocytochrome c and be translocated completely into the intermembrane space.  相似文献   

12.
1. Precipitating antibodies specific for apocytochrome c and holocytochrome c, respectively, were employed to study synthesis and intracellular transport of cytochrome c in Neurospora in vitro. 2. Apocytochrome c as well as holocytochrome c were found to be synthesized in a cell-free homogenate. A precursor product relationship between the two components is suggested by kinetic experiments. 3. Apocytochrome c synthesized in vitro was found in the post-ribosomal fraction and not in the mitochondrial fraction, whereas holocytochrome c synthesized in vitro was mainly detected in the mitochondrial fraction. A precursor product relationship between postribosomal apocytochrome c and mitochondrial holocytochrome c is indicated by the labelling data. In the microsomal fraction both apocytochrome c and holocytochrome c were found in low amounts. Their labeling kinetics do not subbest a precursor role of microsomal apocytochrome c or holocytochrome c. 4. Formation of holocytochrome c from apocytochrome c was observed when postribosomal supernatant containing apocytochrome c synthesized in vitro was incubated with isolated mitochondria, but not when incubated in the absence of mitochondria. The cytochrome c formed under these conditions was detected in the mitochondria. 5. Conversion of labelled apocytochrome c synthesized in vitro to holocytochrome c during incubation of a postribosomal supernatant with isolated mitochondria was inhibited when excess isolated apocytochrome c, but not when holocytochrome c was added. 6. The data presented are interpreted to show that apocytochrome c is synthesized on cytoplasmic ribosomes and released into the supernatant. It is suggested that apocytochrome c migrates to the inner mitochondrial membrane, where the heme group is covalently linked to the apoprotein. The hypothesis is put forward that the concomitant change in conformation leads to trapping of holocytochrome c in the membrane. The problems of permeability of the outer mitochondrial membrane to apocytochrome c and the site and nature of the reaction by which the heme group is linked to the apoprotein are discussed.  相似文献   

13.
Rat liver mitochondria were loaded with cytochrome c by incubation with large amounts of [14C]apocytochrome c. After being washed they were incubated with either more apocytochrome c or cytochrome c. There was no release of labeled proteins from the mitochondria when incubated with cytochrome c. However, there was when incubated with apocytochrome c. The material released showed only one radioactive band which migrated as cytochrome c. Also no release of proteins other than cytochrome c was detected when liver mitochondria isolated from rats injected with [35S]methionine were incubated with apocytochrome c. These results suggest that the level and possibly the turnover of cytochrome c in rat liver mitochondria is regulated by the entry of apocytochrome c into mitochondria.  相似文献   

14.
In this study, we have investigated the protein/lipid interactions of two mitochondrial precursor proteins, apocytochrome c and pCOX IV-DHFR, which exhibit mitochondrial import pathways with different characteristics. In-vitro-synthesized apocytochrome c was found to bind efficiently and specifically to liposomes composed of negatively charged phospholipids and showed a (at least partial) translocation across a lipid bilayer, as reported previously for the chemically prepared precursor protein [Rietveld, A. & de Kruijff, B. (1984) J. Biol. Chem. 259, 6704-6707; Dumont, M. E. & Richards, F. M. (1984) J. Biol. Chem. 259, 4147-4156]. Negatively charged liposomes were shown to efficiently compete with mitochondria for import of in-vitro-synthesized apocytochrome c into the organelle, suggesting an important role for negatively charged phospholipids in the initial binding of apocytochrome c to mitochondria. In contrast, the purified and in-vitro-synthesized precursor fusion protein pCOX IV-DHFR, consisting of the presequence of yeast cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase was unable to translocate across a pure lipid bilayer. The data indicate that the ability of apocytochrome c to spontaneously translocate across the bilayer is not shared by all mitochondrial precursor proteins. The implications of the special protein/lipid interaction of apocytochrome c for import into mitochondria will be discussed.  相似文献   

15.
Monomolecular layers of lipid extracts of microsomal, mitochondrial outer and inner membranes, and pure lipid species have been used to measure their interaction with apo- and holocytochrome c. Large differences were observed both with respect to the nature and the lipid specificity of the interaction. The initial electrostatic interaction of the hemefree precursor apocytochrome c with anionic phospholipids is followed by penetration of the protein in between the acyl chains. Apocytochrome c shows similar interactions for all anionic lipids tested. In strong contrast the holoprotein discriminates enormously between cardiolipin for which it has a high affinity and phosphatidylserine and phosphatidylinositol for which it has a much lower affinity. For these latter lipids the interaction with cytochrome c is primarily electrostatic. The cytochrome c-cardiolipin interaction shows several unique features which suggest the formation of a specific complex between the two molecules. These properties account for the preference in interaction of the apoprotein with the lipid extract of the outer mitochondrial membrane over that of the endoplasmic reticulum and the large preference of cytochrome c for the inner over that of the outer mitochondrial membrane lipid extract. Only apocytochrome c was able to induce close contacts between monolayers of the mitochondrial outer membrane lipids and vesicles of mitochondrial inner membrane lipids. Experiments with fragments of both protein and unfolding experiments with cytochrome c revealed that the differences in interaction between the two proteins are mainly due to differences in their tertiary structure and not the presence of the heme group itself. The initial unfolded structure of apocytochrome c is responsible for the high penetrative power of the protein and its ability to induce close membrane contact, whereas the folded structure of cytochrome c is responsible for the specific interaction with cardiolipin. The results are discussed in the light of the apocytochrome c import process in mitochondria and suggest that lipid-protein interactions contribute to targeting the precursor toward mitochondria and are important for its translocation across the outer mitochondrial membrane and the final localization of cytochrome c toward the outside of the inner mitochondrial membrane.  相似文献   

16.
Heme is covalently attached to cytochrome c by the enzyme cytochrome c heme lyase. To test whether heme attachment is required for import of cytochrome c into mitochondria in vivo, antibodies to cytochrome c have been used to assay the distributions of apo- and holocytochromes c in the cytoplasm and mitochondria from various strains of the yeast Saccharomyces cerevisiae. Strains lacking heme lyase accumulate apocytochrome c in the cytoplasm. Similar cytoplasmic accumulation is observed for an altered apocytochrome c in which serine residues were substituted for the two cysteine residues that normally serve as sites of heme attachment, even in the presence of normal levels of heme lyase. However, detectable amounts of this altered apocytochrome c are also found inside mitochondria. The level of internalized altered apocytochrome c is decreased in a strain that completely lacks heme lyase and is greatly increased in a strain that overexpresses heme lyase. Antibodies recognizing heme lyase were used to demonstrate that the enzyme is found on the outer surface of the inner mitochondrial membrane and is not enriched at sites of contact between the inner and outer mitochondrial membranes. These results suggest that apocytochrome c is transported across the outer mitochondrial membrane by a freely reversible process, binds to heme lyase in the intermembrane space, and is then trapped inside mitochondria by an irreversible conversion to holocytochrome c accompanied by folding to the native conformation. Altered apocytochrome c lacking the ability to have heme covalently attached accumulates in mitochondria only to the extent that it remains bound to heme lyase.  相似文献   

17.
Import of cytochrome c into mitochondria. Cytochrome c heme lyase   总被引:16,自引:0,他引:16  
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5--10-fold by NADH greater than NADPH greater than glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c.  相似文献   

18.
Cytochrome c is synthesized in the cytoplasm as apocytochrome c, lacking heme, and then imported into mitochondria. The relationship between attachment of heme to the apoprotein and its import into mitochondria was examined using an in vitro system. Apocytochrome c transcribed and translated in vitro could be imported with high efficiency into mitochondria isolated from normal yeast strains. However, no import of apocytochrome c occurred with mitochondria isolated from cyc3- strains, which lack cytochrome c heme lyase, the enzyme catalyzing covalent attachment of heme to apocytochrome c. In addition, amino acid substitutions in apocytochrome c at either of the 2 cysteine residues that are the sites of the thioether linkages to heme, or at an immediately adjacent histidine that serves as a ligand of the heme iron, resulted in a substantial reduction in the ability of the precursor to be translocated into mitochondria. Replacement of the methionine serving as the other iron ligand, on the other hand, had no detectable effect on import of apocytochrome c in this system. Thus, covalent heme attachment is a required step for import of cytochrome c into mitochondria. Heme attachment, however, can occur in the absence of mitochondrial import since we have detected CYC3-encoded heme lyase activity in solubilized yeast extracts and in an Escherichia coli expression system. These results suggest that protein folding triggered by heme attachment to apocytochrome c is required for import into mitochondria.  相似文献   

19.
Computer-averaged electron microscopic images of negatively stained crystalline arrays of fungal mitochondrial outer-membrane channels in the presence and absence of cytochrome c were compared. Neither the apo- nor the holo- forms of cytochrome c significantly changed the stain distribution in the protein regions of the channel arrays. However, both forms of cytochrome c caused significant stain exclusion from the lipid domains in the arrays, suggesting binding of the polypeptides at these loci. The implications of binding of apocytochrome c to clusters of exposed phospholipids on the mitochondrial outer membrane are discussed with respect to the mechanism of uptake of this polypeptide by mitochondria.  相似文献   

20.
A hepta-peptide, Arg-Leu-Leu-Pro-Ser-Leu-Gly, which has a sequence involved in the extra peptides of mitochondrial proteins, was synthesized chemically. The peptide was found to bind specifically to mitochondria, but not to microsomes. The binding was blocked by pretreatment of mitochondria with trypsin but was not affected by the presence of apocytochrome c. The synthetic peptide inhibited the binding to mitochondria of the precursor protein of ATPase inhibitor, which was synthesized in vitro, but did not inhibit that of the precursor of the 9 K stabilizing factor, which has an entirely different extra-peptide sequence. The peptide also did not inhibit the binding of apocytochrome c. These results suggest the existence of a common protein receptor on mitochondrial membranes that facilitates entrance of a group of mitochondrial precursor proteins, including pre-ATPase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号