首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A Bar-Shira  A Panet    A Honigman 《Journal of virology》1991,65(10):5165-5173
Sequence analysis of the human T-cell leukemia virus type I (HTLV-I) long terminal repeat (LTR) does not reveal a polyadenylation consensus sequence, AAUAAA, close to the polyadenylation site at the 3' end of the viral RNA. Using site-directed mutagenesis, we demonstrated that two cis-acting signals are required for efficient RNA processing in HTLV-I LTR: (i) a remote AAUAAA hexamer at a distance of 276 nucleotides upstream of the polyadenylation site, and (ii) the 20-nucleotide GU-rich sequence immediately downstream from the poly(A) site. It has been postulated that the folding of RNA into a secondary structure juxtaposes the AAUAAA sequence, in a noncontiguous manner, to within 14 nucleotides of the polyadenylation site. To test this hypothesis, we introduced deletions and point mutations within the U3 and R regions of the LTR. RNA 3'-end processing occurred efficiently at the authentic HTLV-I poly(A) site after deletion of the sequences predicted to form the secondary structure. Thus, the genetic analysis supports the hypothesis that folding of the HTLV-I RNA in the U3 and R regions juxtaposes the AAUAAA sequence and the poly(A) site to the correct functional distance. This unique arrangement of RNA-processing signals is also found in the related retroviruses HTLV-II and bovine leukemia virus.  相似文献   

3.
4.
5.
6.
The protein coding regions of all retroviral pre-mRNAs are flanked by a direct repeat of R-U5 sequences. In many retroviruses, the R-U5 repeat contains a complete core poly(A) site-composed of a highly conserved AAUAAA hexamer and a GU-rich downstream element. A mechanism that allows for the bypass of the 5' core poly(A) site and the exclusive use of the 3' core poly(A) site must therefore exist. In human immunodeficiency virus type 1 (HIV-1), sequences within the U3 region appear to play a key role in poly(A) site selection. U3 sequences are required for efficient 3' processing at the HIV-1 poly(A) site both in vivo and in vitro. These sequences serve to promote the interaction of cleavage and polyadenylation specificity factor (CPSF) with the core poly(A) site. We have now demonstrated the presence of a functionally analogous 3' processing enhancer within the U3 region of a distantly related lentivirus, equine infectious anemia virus (EIAV). U3 sequences enhanced the processing of the EIAV core poly(A) site sevenfold in vitro. The U3 sequences also enhanced the stability of CPSF binding at the core poly(A) site. Optimal processing required the TAR RNA secondary structure that resides within the R region 28 nucleotides upstream of the AAUAAA hexamer. Disruption of TAR reduced processing, while compensatory changes that restored the RNA structure also restored processing to the wild-type level, suggesting a position dependence of the U3-encoded enhancer sequences. Finally, the reciprocal exchange of the EIAV and HIV U3 regions demonstrated the ability of each of these sequences to enhance both 3' processing and the binding of CPSF in the context of the heterologous core poly(A) site. The impact of U3 sequences upon the interaction of CPSF at the core poly(A) site may therefore represent a common strategy for retroviral poly(A) site selection.  相似文献   

7.
8.
Recent in vivo studies have identified specific sequences between 56 and 93 nucleotides upstream of a polyadenylation [poly(A)] consensus sequence, AAUAAA, in human immunodeficiency virus type 1 (HIV-1) that affect the efficiency of 3'-end processing at this site (A. Valsamakis, S. Zeichner, S. Carswell, and J. C. Alwine, Proc. Natl. Acad. Sci. USA 88:2108-2112, 1991). We have used HeLa cell nuclear extracts and precursor RNAs bearing the HIV-1 poly(A) signal to study the role of upstream sequences in vitro. Precursor RNAs containing the HIV-1 AAUAAA and necessary upstream (U3 region) and downstream (U5 region) sequences directed accurate cleavage and polyadenylation in vitro. The in vitro requirement for upstream sequences was demonstrated by using deletion and linker substitution mutations. The data showed that sequences between 56 and 93 nucleotides upstream of AAUAAA, which were required for efficient polyadenylation in vivo, were also required for efficient cleavage and polyadenylation in vitro. This is the first demonstration of the function of upstream sequences in vitro. Previous in vivo studies suggested that efficient polyadenylation at the HIV-1 poly(A) signal requires a spacing of at least 250 nucleotides between the 5' cap site and the AAUAAA. Our in vitro analyses indicated that a precursor containing the defined upstream and downstream sequences was efficiently cleaved at the polyadenylation site when the distance between the 5' cap and the AAUAAA was reduced to at least 140 nucleotides, which is less than the distance predicted from in vivo studies. This cleavage was dependent on the presence of the upstream element.  相似文献   

9.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

10.
11.
12.
Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for replication. Splicing and polyadenylation are coupled in the cells they infect, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS), that binds SR proteins and U1/U11 snRNPs and functions as a pseudo-5' splice site that interacts with and sequesters 3' splice sites. We investigated a link between NRS-mediated splicing inhibition and efficient polyadenylation. In vitro, the NRS alone activated a model RSV polyadenylation substrate, and while the effect did not require the snRNP-binding sites or a downstream 3' splice site, SR proteins were sufficient to stimulate polyadenylation. Consistent with this, SELEX-binding sites for the SR proteins ASF/SF2, 9G8, and SRp20 were able to stimulate polyadenylation when placed upstream of the RSV poly(A) site. In vivo, however, the SELEX sites improved polyadenylation in proviral clones only when the NRS-3' splice site complex could form. Deletions that positioned the SR protein-binding sites closer to the poly(A) site eliminated the requirement for the NRS-3' splice site interaction. This indicates a novel role for SR proteins in promoting RSV polyadenylation in the context of the NRS-3' splice site complex, which is thought to bridge the long distance between the NRS and poly(A) site. The results further suggest a more general role for SR proteins in polyadenylation of cellular mRNAs.  相似文献   

13.
14.
15.
16.
Maximal gene expression in retroviruses requires that polyadenylation in the 5' long terminal repeat (LTR) is suppressed. In human immunodeficiency virus type 1 (HIV-1) the promoter-proximal poly(A) site is blocked by interaction of U1 snRNP with the closely positioned major splice donor site (MSD) 200 nucleotides downstream. Here we investigated whether the same mechanism applies to down-regulate 5' LTR polyadenylation in Moloney murine leukemia virus (MoMLV). Although the same molecular architecture is present in both viruses, the MoMLV poly(A) signal in the 5' LTR is active whether or not the MSD is mutated. This surprising difference between the two retroviruses is not due to their actual poly(A) signals or MSD sequences, since exchange of either element between the two viral sequences does not alter their ability to regulate 5' LTR poly(A) site use. Instead we demonstrate that sequence between the cap and AAUAAA is required for MSD-dependent poly(A) regulation in HIV-1, indicating a key role for this part of the LTR in poly(A) site suppression. We also show that the MoMLV poly(A) signal is an intrinsically weak RNA-processing signal. This suggests that in the absence of a poly(A) site suppression mechanism, MoMLV is forced to use a weak poly(A) signal.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号