首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cofermentation of Aspergillus parasiticus strains (SRRC 163 and SRRC 2043) blocked at different steps in the aflatoxin B1 (AFB1) biosynthetic pathway in a synthetic liquid medium or on seeds (cottonseed, corn kernels, and peanuts) resulted in production of AFB1. Strain SRRC 2043 accumulated O-methylsterigmatocystin (OMST), a late precursor in AFB1 biosynthesis, whereas SRRC 163 accumulated averantin, an early precursor in the pathway. Strain SRRC 2043 secreted large amounts of OMST in culture relative to the amounts of several other pathway intermediates secreted into media (by other AFB1 pathway-blocked strains). AFB1 production occurred even when colonies of SRRC 163 and SRRC 2043 strains (producing no detectable AFB1) were grown together on an agar medium while physically separated from each other by a filter membrane (0.22-micron pore size). In addition, when mycelia of strain SRRC 163 were added to culture filtrates (containing no mycelia but containing secreted OMST) of strain SRRC 2043, AFB1 production occurred. The results suggested a chemical (rather than genetic) mechanism of complementation for AFB1 production between AFB1 pathway-blocked strains, since no mycelial contact was required between these strains for AFB1 production. The mechanism for chemical complementation involves secretion of OMST by SRRC 2043 and subsequent absorption and conversion of OMST to AFB1 by mycelia of strain SRRC 163.  相似文献   

2.
A new metabolite which could be converted to aflatoxin (AF) B2 was detected during cofermentation analysis of two nonaflatoxigenic strains (SRRC 2043 and SRRC 163) of Aspergillus parasiticus. SRRC 2043, which accumulates the xanthone O-methylsterigmatocystin (OMST), a late precursor in the AFB1 pathway, was observed to accumulate another chemically related compound (HOMST; molecular weight, 356); SRRC 163 is blocked early in the pathway and accumulates averantin. During cofermentation of the two strains, levels of OMST and HOMST were observed to be greatly reduced in the culture, with simultaneous production of AFB1, AFB2, and AFG1. Intact cells of SRRC 163 were able to convert pure OMST or its precursor, sterigmatocystin, to AFB1 and AFG1 without AFB2 accumulation; the same cells converted isolated HOMST to AFB2 with no AFB1 or AFG1 production. The results indicate that AFB2 is produced from a separate branch in the AF biosynthetic pathway than are AFB1 and AFG1; AFB2 arises from HOMST, and AFB1 and AFG1 arise from sterigmatocystin and OMST.  相似文献   

3.
A new metabolite which could be converted to aflatoxin (AF) B2 was detected during cofermentation analysis of two nonaflatoxigenic strains (SRRC 2043 and SRRC 163) of Aspergillus parasiticus. SRRC 2043, which accumulates the xanthone O-methylsterigmatocystin (OMST), a late precursor in the AFB1 pathway, was observed to accumulate another chemically related compound (HOMST; molecular weight, 356); SRRC 163 is blocked early in the pathway and accumulates averantin. During cofermentation of the two strains, levels of OMST and HOMST were observed to be greatly reduced in the culture, with simultaneous production of AFB1, AFB2, and AFG1. Intact cells of SRRC 163 were able to convert pure OMST or its precursor, sterigmatocystin, to AFB1 and AFG1 without AFB2 accumulation; the same cells converted isolated HOMST to AFB2 with no AFB1 or AFG1 production. The results indicate that AFB2 is produced from a separate branch in the AF biosynthetic pathway than are AFB1 and AFG1; AFB2 arises from HOMST, and AFB1 and AFG1 arise from sterigmatocystin and OMST.  相似文献   

4.
Cell-free extracts of fungal mycelia of two aflatoxin non-producing isolates of Aspergillus parasiticus (SRRC 163 and SRRC 2043) were utilized for the study of enzyme activities involved in the latter stages of aflatoxin biosynthesis. The post-microsomal fractions (105,000 x g supernatant) of both SRRC 163 and SRRC 2043 were able to convert sterigmatocystin (ST) into O-methylsterigmatocystin (OMST); whereas the microsomal (105,000 x g pellet) preparation of only SRRC 163 was able to convert OMST into aflatoxin B1 (AFB1). S-Adenosylmethionine (SAM) was the primary substrate for the ST to OMST (methyltransferase) enzymatic conversion; [3H]OMST of specific activity 0.93 Ci/mmol was obtained in a reaction containing the [3H]SAM substrate (specific activity 1 Ci/mmol). After the terminal enzymatic conversion of OMST into AFB1, none of the radiolabel of the methyl group from OMST was found in AFB1. It is postulated that the methylation of ST may be required for subsequent enzymatic oxidation of OMST to aflatoxin B1.  相似文献   

5.
An isolate of Aspergillus parasiticus CP461 (SRRC 2043) produced no detectable aflatoxins, but accumulated O-methylsterigmatocystin (OMST). When sterigmatocystin (ST) was fed to this isolate in a low-sugar medium, there was an increase in the accumulation of OMST, without aflatoxin synthesis. When radiolabeled [14C]OMST was fed to resting mycelia of a non-aflatoxin-, non-ST-, and non-OMST-producing mutant of A. parasiticus AVN-1 (SRRC 163), 14C-labeled aflatoxins B1 and G1 were produced; 10 nmol of OMST produced 7.8 nmol of B1 and 1.0 nmol of G1, while 10 nmol of ST produced 6.4 nmol of B1 and 0.6 nmol of G1. A time course study of aflatoxin synthesis in ST feeding experiments with AVN-1 revealed that OMST is synthesized by the mold during the onset of aflatoxin synthesis. The total amount of aflatoxins recovered from OMST feeding experiments was higher than from experiments in which ST was fed to the resting mycelia. These results suggest that OMST is a true metabolite in the aflatoxin biosynthetic pathway between sterigmatocystin and aflatoxins B1 and G1 and is not a shunt metabolite, as thought previously.  相似文献   

6.
Two routes for the conversion of 5'-hydroxyaverantin (HAVN) to averufin (AVF) in the synthesis of aflatoxin have been proposed. One involves the dehydration of HAVN to the lactone averufanin (AVNN), which is then oxidized to AVF. Another requires dehydrogenation of HAVN to 5'-ketoaverantin, the open-chain form of AVF, which then cyclizes spontaneously to AVF. We isolated a gene, adhA, from the aflatoxin gene cluster of Aspergillus parasiticus SU-1. The deduced ADHA amino acid sequence contained two conserved motifs found in short-chain alcohol dehydrogenases-a glycine-rich loop (GXXXGXG) that is necessary for interaction with NAD(+)-NADP(+), and the motif YXXXK, which is found at the active site. A. parasiticus SU-1, which produces aflatoxins, has two copies of adhA (adhA1), whereas A. parasiticus SRRC 2043, a strain that accumulates O-methylsterigmatocystin (OMST), has only one copy. Disruption of adhA in SRRC 2043 resulted in a strain that accumulates predominantly HAVN. This result suggests that ADHA is involved in the dehydrogenation of HAVN to AVF. Those adhA disruptants that still made small amounts of OMST also accumulated other metabolites, including AVNN, after prolonged culture.  相似文献   

7.
Two routes for the conversion of 5′-hydroxyaverantin (HAVN) to averufin (AVF) in the synthesis of aflatoxin have been proposed. One involves the dehydration of HAVN to the lactone averufanin (AVNN), which is then oxidized to AVF. Another requires dehydrogenation of HAVN to 5′-ketoaverantin, the open-chain form of AVF, which then cyclizes spontaneously to AVF. We isolated a gene, adhA, from the aflatoxin gene cluster of Aspergillus parasiticus SU-1. The deduced ADHA amino acid sequence contained two conserved motifs found in short-chain alcohol dehydrogenases—a glycine-rich loop (GXXXGXG) that is necessary for interaction with NAD+-NADP+, and the motif YXXXK, which is found at the active site. A. parasiticus SU-1, which produces aflatoxins, has two copies of adhA (adhA1), whereas A. parasiticus SRRC 2043, a strain that accumulates O-methylsterigmatocystin (OMST), has only one copy. Disruption of adhA in SRRC 2043 resulted in a strain that accumulates predominantly HAVN. This result suggests that ADHA is involved in the dehydrogenation of HAVN to AVF. Those adhA disruptants that still made small amounts of OMST also accumulated other metabolites, including AVNN, after prolonged culture.  相似文献   

8.
Aflatoxins B1 (AFB1) and B2 (AFB2) are biologically active secondary metabolites of Aspergillus flavus and Aspergillus parasiticus. These toxins are synthesized by the fungi from pathway precursors: sterigmatocystin (ST)----O-methylsterigmatocystin (OMST)----AFB1; dihydrosterigmatocystin (DHST)----dihydro-O-methylsterigmatocystin (DHOMST)----AFB2. The late stages of AFB1 synthesis are carried out by two enzyme activities, a methyltransferase (MT) (ST----OMST), and an oxidoreductase (OR) (OMST----AFB1). Properties of the purified MT have been identified in a previous investigation [Bhatnagar et al. (1988) Prep. Biochem. 18, 321]. In the current study, the OR was partially purified (150-fold of specific activity) from fungal cell-free extracts and characterized with extended investigation of the late stages of AFB1 and AFB2 synthesis. Whole cells of an isolate of A. flavus (SRRC 141), which produce only AFB2, were able to produce AFB1 in ST and OMST feeding studies; the results suggested that the enzymes involved in AFB2 biosynthesis also carry out AFB1 synthesis. Substrate competition experiments carried out with the OR showed that an increasing concentration of either OMST or DHOMST in the presence of a fixed, nonsaturating concentration of either DHOMST or OMST, respectively, resulted in a decline in production of one aflatoxin (B1 or B2) with a corresponding increase in the synthesis of the other toxin (B2 or B1). OMST was a preferred substrate (Km, 1.2 microM) for the oxidoreductase as compared to DHOMST (Km, 13.4 microM). Similar, substrate competition experiments showed that ST (Km, 2.0 microM) was a preferred substrate over DHST (Km, 22.5 microM) for a homogeneous MT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The relevance of oxidative stress in the production of aflatoxin and its precursors was examined in different mutants of Aspergillus parasiticus, which produce aflatoxin or its precursor intermediates, and compared with results obtained from a non-toxigenic strain. In comparison to the non-toxigenic strain (SRRC 255), an aflatoxin producing strain (NRRL 2999) or mutants that accumulate aflatoxin precursors such as norsolorinic acid (by SRRC 162) or versicolorin (by NRRL 6196) or O-methyl sterigmatocystin (by SRRC 2043) had greater oxygen requirements and higher contents of reactive oxygen species. These changes were in the graded order of NRRL 2999 > SRRC 2043 > NRRL 6196 > SRRC 162 > SRRC 255, indicating incremental accumulation of reactive oxygen species, being least in the non-toxigenic strain and increasing progressively during the ternary steps of aflatoxin formation. Oxidative stress in these strains was evident by increased activities of xanthine oxidase and free radical scavenging enzymes (superoxide dismutase and glutathione peroxidase) as compared to the non-toxigenic strain (SRRC 255). Culturing the toxigenic strain in presence of 0.1–10 μM H2O2 in the medium resulted in enhanced aflatoxin production, which could be related to dose-dependent increase in [14C]-acetate incorporation into aflatoxin B1 and increased acetyl CoA carboxylase activity. The combined results suggest that formation of secondary metabolites such as aflatoxin and its precursors by A. parasiticus may occur as a compensatory response to reactive oxygen species accumulation.  相似文献   

10.
In aflatoxin biosynthesis, the pathway for the conversion of 1-hydroxyversicolorone to versiconal hemiacetal acetate (VHA) to versiconal (VHOH) is part of a metabolic grid. In the grid, the steps from VHA to VHOH and from versiconol acetate (VOAc) to versiconol (VOH) may be catalyzed by the same esterase. Several esterase activities are associated with the conversion of VHA to VHOH, but only one esterase gene (estA) is present in the complete aflatoxin gene cluster of Aspergillus parasiticus. We deleted the estA gene from A. parasiticus SRRC 2043, an O-methylsterigmatocystin (OMST)-accumulating strain. The estA-deleted mutants were pigmented and accumulated mainly VHA and versicolorin A (VA). A small amount of VOAc and other downstream aflatoxin intermediates, including VHOH, versicolorin B, and OMST, also were accumulated. In contrast, a VA-accumulating mutant, NIAH-9, accumulated VA exclusively and neither VHA nor VOAc were produced. Addition of the esterase inhibitor dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the transformation recipient strain RHN1, an estA-deleted mutant, or NIAH-9 resulted in the accumulation of only VHA and VOAc. In in vitro enzyme assays, the levels of the esterase activities catalyzing the conversion of VHA to VHOH in the cell extracts of two estA-deleted mutants were decreased to approximately 10% of that seen with RHN1. Similar decreases in the esterase activities catalyzing the conversion of VOAc to VOH were also obtained. Thus, the estA-encoded esterase catalyzes the conversion of both VHA to VHOH and VOAc to VOH during aflatoxin biosynthesis.  相似文献   

11.
Recent work on the aflatoxin biosynthetic pathway is reviewed, with special emphasis on the enzymes of the late stages of the pathway involving conversion of sterigmatocystin (ST) to aflatoxin B1 (AFB1) through an O-methylsterigmatocystin intermediate. Two enzyme activities were discovered in subcellular fractions of cell-free extracts of a mutant strain ofAspergillus parasiticus (SRRC 163): 1)A post-microsomal methyltransferase (MT) catalyzed conversion of ST to OMST, and 2) a microsomal-associated activity (oxido-reductase) converted OMST to AFB1. The 168 KDa, anionic MT was purified to homogeneity and characterized (two subunits, 110 KDa and 58 KDa). Preliminary evidence indicated the presence of a cationic isozyme of the MT in mycelial extracts. The oxido-reductase has been partially purified and characterized. Polyclonal antibodies were prepared to the anionic MT and the enzyme's amino acid composition determined. A cDNA library has been constructed from mRNA isolated fromAspergillus parasiticus mycelia during the onset of AFB1 biosynthesis for the purpose of identifying the genes responsible for aflatoxin biosynthesis.  相似文献   

12.
In aflatoxin biosynthesis, aflatoxins G(1) (AFG(1)) and B(1) (AFB(1)) are independently produced from a common precursor, O-methylsterigmatocystin (OMST). Recently, 11-hydroxy-O-methylsterigmatocystin (HOMST) was suggested to be a later precursor involved in the conversion of OMST to AFB(1), and conversion of HOMST to AFB(1) was catalyzed by OrdA enzyme. However, the involvement of HOMST in AFG(1) formation has not been determined. In this work, HOMST was prepared by incubating OrdA-expressing yeast with OMST. Feeding Aspergillus parasiticus with HOMST allowed production of AFG(1) as well as AFB(1). In cell-free systems, HOMST was converted to AFG(1) when the microsomal fraction, the cytosolic fraction from A. parasiticus, and yeast expressing A. parasiticus OrdA were added. These results demonstrated (1) HOMST is produced from OMST by OrdA, (2) HOMST is a precursor of AFG(1) as well as AFB(1), and (3) three enzymes, OrdA, CypA, and NadA, and possibly other unknown enzymes are involved in conversion of HOMST to AFG(1).  相似文献   

13.
In aflatoxin biosynthesis, the pathway for the conversion of 1-hydroxyversicolorone to versiconal hemiacetal acetate (VHA) to versiconal (VHOH) is part of a metabolic grid. In the grid, the steps from VHA to VHOH and from versiconol acetate (VOAc) to versiconol (VOH) may be catalyzed by the same esterase. Several esterase activities are associated with the conversion of VHA to VHOH, but only one esterase gene (estA) is present in the complete aflatoxin gene cluster of Aspergillus parasiticus. We deleted the estA gene from A. parasiticus SRRC 2043, an O-methylsterigmatocystin (OMST)-accumulating strain. The estA-deleted mutants were pigmented and accumulated mainly VHA and versicolorin A (VA). A small amount of VOAc and other downstream aflatoxin intermediates, including VHOH, versicolorin B, and OMST, also were accumulated. In contrast, a VA-accumulating mutant, NIAH-9, accumulated VA exclusively and neither VHA nor VOAc were produced. Addition of the esterase inhibitor dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the transformation recipient strain RHN1, an estA-deleted mutant, or NIAH-9 resulted in the accumulation of only VHA and VOAc. In in vitro enzyme assays, the levels of the esterase activities catalyzing the conversion of VHA to VHOH in the cell extracts of two estA-deleted mutants were decreased to approximately 10% of that seen with RHN1. Similar decreases in the esterase activities catalyzing the conversion of VOAc to VOH were also obtained. Thus, the estA-encoded esterase catalyzes the conversion of both VHA to VHOH and VOAc to VOH during aflatoxin biosynthesis.  相似文献   

14.
Aspergillus parasiticus produces the minor aflatoxins M(1) (AFM(1)), M(2) (AFM(2)), GM(1) (AFGM(1)), and GM(2) (AFGM(2)), as well as the major aflatoxins B(1) (AFB(1)), B(2) (AFB(2)), G(1) (AFG(1)), and G(2) (AFG(2)). Feeding of A. parasiticus with aspertoxin (12c-hydroxyOMST) caused AFM(1) and AFGM(1), and cell-free experiments using the microsomal fraction of A. parasiticus and aspertoxin caused production of AFM(1), indicating that aspertoxin is a precursor of AFM(1) and AFGM(1). Feeding of the same fungus with O-methylsterigmatocystin (OMST) caused AFM(1) and AFGM(1) together with AFB(1) and AFG(1); feeding with dihydroOMST (DHOMST) caused AFM(2) and AFGM(2) together with AFB(2) and AFG(2). Incubation of either the microsomal fraction or OrdA enzyme-expressing yeast with OMST caused production of aspertoxin together with AFM(1) and AFB(1). These results demonstrated that the OrdA enzyme catalyzes both 12c-hydroxylation reaction from OMST to aspertoxin and the successive reaction from aspertoxin to AFM(1). In contrast, feeding of the fungus with AFB(1) did not produce any AFM(1), demonstrating that M-/GM-aflatoxins are not produced from B-/G-aflatoxins. Furthermore, AFM(1) together with AFB(1) and AFG(1) was also produced from 11-hydroxyOMST (HOMST) in feeding experiment of A. parasiticus, whereas no aflatoxins were produced when used the ordA deletion mutant. These results demonstrated that OrdA enzyme can also catalyze 12c-hydroxylation of HOMST to produce 11-hydroxyaspertoxin, which serves as a precursor for the production of AFM(1) and AFGM(1). The same pathway may work for the production of AFM(2) and AFGM(2) from DHOMST and dihydroHOMST through the formation of dihydroaspertoxin and dihydro-11-hydroxyaspertoxin, respectively.  相似文献   

15.
Secondary metabolism in fungi is frequently associated with asexual and sexual development. Aspergillus parasiticus produces aflatoxins known to contaminate a variety of agricultural commodities. This strictly mitotic fungus, besides producing conidia asexually, produces sclerotia, structures resistant to harsh conditions and for propagation. Sclerotia are considered to be derived from the sexual structure, cleistothecia, and may represent a vestige of ascospore production. Introduction of the aflatoxin pathway-specific regulatory gene, aflR, and aflJ, which encoded a putative co-activator, into an O-methylsterigmatocystin (OMST)-accumulating strain,A. parasiticus SRRC 2043, resulted in elevated levels of accumulation of major aflatoxin precursors, including norsolorinic acid (NOR), averantin (AVN), versicolorin A (VERA) and OMST. The total amount of these aflatoxin precursors, NOR, VERA, AVN and OMST, produced by the aflR plus aflJ transformants was two to three-fold that produced by the aflR transformants. This increase indicated a synergisticeffect of aflR and aflJ on the synthesis of aflatoxin precursors. Increased production of the aflatoxin precursors was associated with progressive decrease in sclerotial size, alteration in sclerotial shape and weakening in the sclerotial structure of the transformants. The results showed that sclerotial development and aflatoxin biosynthesis are closely related. We proposed that competition for a common substrate, such as acetate, by the aflatoxin biosynthetic pathway could adversely affect sclerotial development in A. parasiticus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA gene’s function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G1 (AFG1). LC–MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG1. We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG1 from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A. parasiticus strain significantly enhanced the AFG1 formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG1, which required NADPH or NADH, indicating that NADA is a precursor of AFG1; in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme required for G-aflatoxin biosynthesis from OMST, and that it catalyzes the reaction from NADA to AFG1, the last step in G-aflatoxin biosynthesis.  相似文献   

17.
AIMS: To investigate how linoleic acid affects conidial production and sclerotial development in a strictly mitotic Aspergillus parasiticus field isolate as related to improving biocompetitivity of atoxigenic Aspergillus species. METHODS AND RESULTS: We disrupted A. parasiticusDelta12-oleic acid desaturase gene (odeA) responsible for the conversion of oleic acid to linoleic acid. We examined conidiation and sclerotial development of SRRC 2043 and three isogenic mutant strains deleted for the odeA gene (DeltaodeA), either with or without supplementing linoleic acid, on one complex potato dextrose agar (PDA) medium and on two defined media: nitrate-containing Czapek agar (CZ) and Cove's ammonium medium (CVN). The DeltaodeA mutants produced less conidia than the parental strain on all media. Linoleic acid supplementation (as sodium linoleate at 0.3 and 1.2 mg ml(-1)) restored the DeltaodeA conidial production comparable to or exceeding the unsupplemented parental level, and the effect was medium dependent, with the highest increase on CVN and the least on PDA. SRRC 2043 and the DeltaodeA mutants were unable to produce sclerotia on CVN. On unsupplemented PDA and CZ, DeltaodeA sclerotial mass was comparable to that of SRRC 2043, but sclerotial number increased significantly to two- to threefold. Supplementing linoleic acid to media, in general, tended to decrease wild type and DeltaodeA sclerotial mass and sclerotial number. CONCLUSIONS: Linoleic acid stimulates conidial production but has an inhibitory effect on sclerotial development. The relationship between the two processes in A. parasiticus is complex and affected by multiple factors, such as fatty acid composition and nitrogen source. SIGNIFICANCE AND IMPACT OF STUDY: Conditions that promote sclerotial development differ from those required to promote maximum conidial production. Manipulation of content and availability of linoleic acid at different fungal growth phases might optimize conidial and sclerotial production hence increasing the efficacy of biocompetitive Aspergillus species.  相似文献   

18.
19.
20.
Individual reaction requirements were determined for each of two enzyme activities present in Aspergillus parasiticus mycelia which together catalyze conversion of sterigmatocystin (ST) to aflatoxin B1 (AFB1). A postmicrosomal activity (PMA) catalyzed conversion of ST to O-methylsterigmatocystin (OMST) and a microsomal activity (MA) catalyzed conversion of OMST to AFB1. PMA was stimulated two- to three-fold in the presence of S-adenosylmethionine. Addition of NADPH promoted the maximum MA; this activity was not detected when FAD, FMN, NAD, or NADH were utilized individually as cofactors in reaction mixtures. A substantial amount (62%) of MA was lost during isolation of the microsomal fraction, but the activity was completely restored by reconstitution with a heat-treated (100 degrees C) postmicrosomal fraction. The reaction catalyzed by MA was optimum at pH 7.0 and at 17-23 degrees C, whereas the PMA reaction was optimum at pH 8.0-8.5 and at 35-40 degrees C. Apparent Km values of approximately 2.6 X 10(-6) M (for ST) and 6.6 X 10(-7) M (for OMST) were determined for PMA and MA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号