首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, Iα, Iβ and Iλ, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.  相似文献   

2.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) from bovine heart is a complicated multisubunit, membrane-bound assembly. Seven subunits are encoded by mitochondrial DNA, and the sequences of 36 nuclear encoded subunits have been described. The subunits of complex I and two subcomplexes (Ialpha and Ibeta) were resolved on one- and two-dimensional gels and by reverse-phase high performance liquid chromatography. Mass spectrometric analysis revealed two previously unknown subunits in complex I, named B14.7 and ESSS, one in each subcomplex. Coding sequences for each protein were identified in data bases and were confirmed by cDNA cloning and sequencing. Subunit B14.7 has an acetylated N terminus, no presequence, and contains four potential transmembrane helices. It is homologous to subunit 21.3b from complex I in Neurospora crassa and is related to Tim17, Tim22, and Tim23, which are involved in protein translocation across the inner membrane. Subunit ESSS has a cleaved mitochondrial import sequence and one potential transmembrane helix. A total of 45 different subunits of bovine complex I have now been characterized.  相似文献   

3.
Deficiencies in the activity of complex I (NADH: ubiquinone oxidoreductase) are an important cause of human mitochondrial disease. Complex I is composed of at least 46 structural subunits that are encoded in both nuclear and mitochondrial DNA. Enzyme deficiency can result from either impaired catalytic efficiency or an inability to assemble the holoenzyme complex; however, the assembly process remains poorly understood. We have used two-dimensional Blue-Native/SDS gel electrophoresis and a panel of 11 antibodies directed against structural subunits of the enzyme to investigate complex I assembly in the muscle mitochondria from four patients with complex I deficiency caused by either mitochondrial or nuclear gene defects. Immunoblot analyses of second dimension denaturing gels identified seven distinct complex I subcomplexes in the patients studied, five of which could also be detected in nondenaturing gels in the first dimension. Although the abundance of these intermediates varied among the different patients, a common constellation of subcomplexes was observed in all cases. A similar profile of subcomplexes was present in a human/mouse hybrid fibroblast cell line with a severe complex I deficiency due to an almost complete lack of assembly of the holoenzyme complex. The finding that diverse causes of complex I deficiency produce a similar pattern of complex I subcomplexes suggests that these are intermediates in the assembly of the holoenzyme complex. We propose a possible assembly pathway for the complex, which differs significantly from that proposed for Neurospora, the current model for complex I assembly.  相似文献   

4.
The sequences of 42 subunits of NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria have been described previously. Seven are encoded by mitochondrial DNA, whereas the remaining 35 are nuclear gene products imported into the organelle from the cytoplasm. An additional protein, which does not correspond to any previously known subunit of the complex I assembly, has now been detected. Denaturing gels of subcomplex Ilambda, the hydrophilic arm of complex I, clearly show a hitherto unidentified band, which was digested with trypsin and subjected to mass-spectrometric analysis to provide several peptide sequences, used in cDNA cloning and sequencing. Measurement of the intact protein mass indicated that the N terminus is acetylated. The new complex I subunit (B16.6) is the bovine homolog of GRIM-19, the product of a cell death regulatory gene induced by interferon-beta and retinoic acid, thus providing a new link between the mitochondrion and its electron-transport chain and apoptotic cell death.  相似文献   

5.
NADH:ubiquinone oxidoreductase, the first enzyme in the respiratory electron transport chain of mitochondria, is a membrane-bound multi-subunit assembly, and the bovine heart enzyme is now known to contain about 40 different polypeptides. Seven of them are encoded in the mitochondrial DNA; the remainder are the products of nuclear genes and are imported into the organelle. The primary structures of 12 of the nuclear coded subunits have been described and those of a further 20 are described here. The subunits have been sequenced by following a strategy based on the polymerase chain reaction. This strategy has been tailored from existing methods with the twofold aim of avoiding the use of cDNA libraries, and of obtaining a cDNA sequence rapidly with minimal knowledge of protein sequence, such as can be determined in a single N-terminal sequence experiment on a polypeptide spot on a two-dimensional gel. The utility and speed of this strategy have been demonstrated by sequencing cDNAs encoding 32 nuclear-coded-membrane associated proteins found in bovine heart mitochondria, and the procedures employed are illustrated with reference to the cDNA sequence of the 20 subunits of NADH:ubiquinone oxidoreductase that are presented. Extensive use has also been made of electrospray mass spectrometry to measure molecular masses of the purified subunits. This has corroborated the protein sequences of subunits with unmodified N terminals, and their measured molecular masses agree closely with those calculated from the protein sequences. Nine of the subunits, B8, B9, B12, B13, B14, B15, B17, B18 and B22 have modified alpha-amino groups. The measured molecular masses of subunits B8, B13, B14 and B17 are consistent with the post-translational removal of the initiator methionine and N-acetylation of the adjacent amino acid. The initiator methionine of subunit B18 has been removed and the N-terminal glycine modified by myristoylation. Subunits B9 and B12 appear to have N-terminal and other modifications of a hitherto unknown nature. The sequences of the subunits of bovine complex I provide important clues about the location of iron-sulphur clusters and substrate and cofactor binding sites, and give valuable information about the topology of the complex. No function has been ascribed to many of the subunits, but some of the sequences indicate the presence of hitherto unsuspected biochemical functions. Most notably the identification of an acyl carrier protein in both the bovine and Neurospora crassa complexes provides evidence that part of the complex may play a role in fatty acid biosynthesis in the organelle, possibly in the formation of cardiolipin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Made of more than 40 subunits, the rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. In vascular plants, fungi, and animals, at least seven complex I subunits (ND1, -2, -3, -4, -4L, -5, and -6; ND is NADH dehydrogenase) are coded by mitochondrial genes. The role of these highly hydrophobic subunits in the enzyme activity and assembly is still poorly understood. In the unicellular green alga Chlamydomonas reinhardtii, the ND3 and ND4L subunits are encoded in the nuclear genome, and we show here that the corresponding genes, called NUO3 and NUO11, respectively, display features that facilitate their expression and allow the proper import of the corresponding proteins into mitochondria. In particular, both polypeptides show lower hydrophobicity compared to their mitochondrion-encoded counterparts. The expression of the NUO3 and NUO11 genes has been suppressed by RNA interference. We demonstrate that the absence of ND3 or ND4L polypeptides prevents the assembly of the 950-kDa whole complex I and suppresses the enzyme activity. The putative role of hydrophobic ND subunits is discussed in relation to the structure of the complex I enzyme. A model for the assembly pathway of the Chlamydomonas enzyme is proposed.  相似文献   

7.
Complex I purified from bovine heart mitochondria is a multisubunit membrane-bound assembly. In the past, seven of its subunits were shown to be products of the mitochondrial genome, and 35 nuclear encoded subunits were identified. The complex is L-shaped with one arm in the plane of the membrane and the other lying orthogonal to it in the mitochondrial matrix. With mildly chaotropic detergents, the intact complex has been resolved into various subcomplexes. Subcomplex Ilambda represents the extrinsic arm, subcomplex Ialpha consists of subcomplex Ilambda plus part of the membrane arm, and subcomplex Ibeta is another substantial part of the membrane arm. The intact complex and these three subcomplexes have been subjected to extensive reanalysis. Their subunits have been separated by three independent methods (one-dimensional SDS-PAGE, two-dimensional isoelectric focusing/SDS-PAGE, and reverse phase high pressure liquid chromatography (HPLC)) and analyzed by tryptic peptide mass fingerprinting and tandem mass spectrometry. The masses of many of the intact subunits have also been measured by electrospray ionization mass spectrometry and have provided valuable information about post-translational modifications. The presence of the known 35 nuclear encoded subunits in complex I has been confirmed, and four additional nuclear encoded subunits have been detected. Subunits B16.6, B14.7, and ESSS were discovered in the SDS-PAGE analysis of subcomplex Ilambda, in the two-dimensional gel analysis of the intact complex, and in the HPLC analysis of subcomplex Ibeta, respectively. Despite many attempts, no sequence information has been obtained yet on a fourth new subunit (mass 10,566+/-2 Da) also detected in the HPLC analysis of subcomplex Ibeta. It is unlikely that any more subunits of the bovine complex remain undiscovered. Therefore, the intact enzyme is a complex of 46 subunits, and, assuming there is one copy of each subunit in the complex, its mass is 980 kDa.  相似文献   

8.
NADH:ubiquinone reductase, the respiratory chain complex I of mitochondria, consists of some 25 nuclear-encoded and seven mitochondrially encoded subunits, and contains as redox groups one FMN, probably one internal ubiquinone and at least four iron-sulphur clusters. We are studying the assembly of the enzyme in Neurospora crassa. The flux of radioactivity in cells that were pulse-labelled with [35S]methionine was followed through immunoprecipitable assembly intermediates into the holoenzyme. Labelled polypeptides were observed to accumulate transiently in a Mr 350,000 intermediate complex. This complex contains all mitochondrially encoded subunits of the enzyme as well as subunits encoded in the nucleus that have no homologous counterparts in a small, merely nuclear-encoded form of the NADH:ubiquinone reductase made by Neurospora crassa cells poisoned with chloramphenicol. With regard to their subunit compositions, the assembly intermediate and small NADH:ubiquinone reductase complement each other almost perfectly to give the subunit composition of the large complex I. These results suggest that two pathways exist in the assembly of complex I that independently lead to the preassembly of two major parts, which subsequently join to form the complex. One preassembled part is related to the small form of NADH:ubiquinone reductase and contributes most of the nuclear-encoded subunits, FMN, three iron-sulphur clusters and the site for the internal ubiquinone. The other part is the assembly intermediate and contributes all mitochondrially encoded subunits, one iron-sulphur cluster and the catalytic site for the substrate ubiquinone. We discuss the results with regard to the evolution of the electron pathway through complex I.  相似文献   

9.
Complex I (NADH:ubiquinone oxidoreductase) is crucial to respiration in many aerobic organisms. The hydrophilic domain of complex I, containing nine or more redox cofactors, and comprising seven conserved core subunits, protrudes into the mitochondrial matrix or bacterial cytoplasm. The α-helical membrane-bound hydrophobic domain contains a further seven core subunits that are mitochondrial-encoded in eukaryotes and named the ND subunits (ND1-ND6 and ND4L). Complex I couples the oxidation of NADH in the hydrophilic domain to ubiquinone reduction and proton translocation in the hydrophobic domain. Although the mechanisms of NADH oxidation and intramolecular electron transfer are increasingly well understood, the mechanisms of ubiquinone reduction and proton translocation remain only poorly defined. Recently, an α-helical model of the hydrophobic domain of bacterial complex I [Efremov, Baradaran and Sazanov (2010) Nature 465, 441-447] revealed how the 63 transmembrane helices of the seven core subunits are arranged, and thus laid a foundation for the interpretation of functional data and the formulation of mechanistic proposals. In the present paper, we aim to correlate information from sequence analyses, site-directed mutagenesis studies and mutations that have been linked to human diseases, with information from the recent structural model. Thus we aim to identify and discuss residues in the ND subunits of mammalian complex I which are important in catalysis and for maintaining the enzyme's structural and functional integrity.  相似文献   

10.
The presence of mitochondrial respiratory complex I in the pathogenic bloodstream stages of Trypanosoma brucei has been vigorously debated: increased expression of mitochondrially encoded functional complex I mRNAs is countered by low levels of enzymatic activity that show marginal inhibition by the specific inhibitor rotenone. We now show that epitope-tagged versions of multiple complex I subunits assemble into α and β subcomplexes in the bloodstream stage and that these subcomplexes require the mitochondrial genome for their assembly. Despite the presence of these large (740- and 855-kDa) multisubunit complexes, the electron transport activity of complex I is not essential under experimental conditions since null mutants of two core genes (NUBM and NUKM) showed no growth defect in vitro or in mouse infection. Furthermore, the null mutants showed no decrease in NADH:ubiquinone oxidoreductase activity, suggesting that the observed activity is not contributed by complex I. This work conclusively shows that despite the synthesis and assembly of subunit proteins, the enzymatic function of the largest respiratory complex is neither significant nor important in the bloodstream stage. This situation appears to be in striking contrast to that for the other respiratory complexes in this parasite, where physical presence in a life-cycle stage always indicates functional significance.  相似文献   

11.
Complex I (NADH:ubiquinone oxidoreductase) purified from bovine heart mitochondria was treated with the detergent N, N-dimethyldodecylamine N-oxide (LDAO). The enzyme dissociated into two known subcomplexes, Ialpha and Ibeta, containing mostly hydrophilic and hydrophobic subunits, and a previously undetected fragment referred to as Igamma. Subcomplex Igamma contains the hydrophobic subunits ND1, ND2, ND3, and ND4L which are encoded in the mitochondrial genome, and the nuclear-encoded subunit KFYI. During size-exclusion chromatography in the presence of LDAO, subcomplex Ialpha lost several subunits and formed another characterized subcomplex known as Ilambda. Similarly, subcomplex Ibeta dissociated into two smaller subcomplexes, one of which contains the hydrophobic subunits ND4 and ND5; subcomplex Igamma released a fragment containing ND1 and ND2. These results suggest that in the intact complex subunits ND1 and ND2 are likely to be in a different region of the membrane domain than subunits ND4 and ND5. The compositions of the various subcomplexes and fragments of complex I provide an organization of the subunits of the enzyme in the framework of the known low resolution structure of the enzyme.  相似文献   

12.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

13.
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.  相似文献   

14.
The proton-pumping NADH:ubiquinone oxidoreductase is the first of the respiratory chain complexes in many bacteria and the mitochondria of most eukaryotes. In general, the bacterial complex consists of 14 different subunits. In addition to the homologues of these subunits, the mitochondrial complex contains approximately 31 additional proteins. While it was shown that the mitochondrial complex is assembled from distinct intermediates, nothing is known about the assembly of the bacterial complex. We used Escherichia coli mutants, in which the nuo-genes coding the subunits of complex I were individually disrupted by an insertion of a resistance cartridge to determine whether they are required for the assembly of a functional complex I. No complex I-mediated enzyme activity was detectable in the mutant membranes and it was not possible to extract a structurally intact complex I from the mutant membranes. However, the subunits and the cofactors of the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of some of the nuo-mutants. It is discussed whether this fragment represents an assembly intermediate. In addition, a membrane-bound fragment exhibiting NADH/ferricyanide oxidoreductase activity and containing the iron-sulfur cluster N2 was detected in one mutant.  相似文献   

15.
Pohl T  Uhlmann M  Kaufenstein M  Friedrich T 《Biochemistry》2007,46(37):10694-10702
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.  相似文献   

16.
NADH:ubiquinone oxidoreductase (complex I) was purified from bovine heart mitochondria by solubilization with n-dodecyl beta-D-maltoside (lauryl maltoside), ammonium sulfate fractionation, and chromatography on Mono Q in the presence of the detergent. Its subunit composition was very similar to complex I purified by conventional means. Complex I was dissociated in the presence of N,N-dimethyldodecylamine N-oxide and beta-mercaptoethanol, and two subcomplexes, I alpha and I beta, were isolated by chromatography. Subcomplex I alpha catalyzes electron transfer from NADH to ubiquinone-1. It is composed of about 22 different and mostly hydrophilic subunits and contains 2.0 nmol of FMN/mg of protein. Among its subunits is the 51-kDa subunit, which binds FMN and NADH and probably contains a [4Fe-4S] cluster also. Three other potential Fe-S proteins, the 75- and 24-kDa subunits and a 23-kDa subunit (N-terminal sequence TYKY), are also present. All of the Fe-S clusters detectable by EPR in complex I, including cluster 2, are found in subcomplex I alpha. The line shapes of the EPR spectra of the Fe-S clusters are slightly broadened relative to spectra measured on complex I purified by conventional means, and the quinone reductase activity is insensitive to rotenone. Similar changes were found in samples of the intact chromatographically purified complex I, or in complex I prepared by the conventional method and then subjected to chromatography in the presence of lauryl maltoside. Subcomplex I beta contains about 15 different subunits. The sequences of many of them contain hydrophobic segments that could be membrane spanning, including at least two mitochondrial gene products, ND4 and ND5. The role of subcomplex I beta in the intact complex remains to be elucidated.  相似文献   

17.
The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ΔNuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

18.
NADH:ubiquinone oxidoreductase, the respiratory chain complex I of mitochondria, is an assembly of some 25 nuclear-encoded and 7 mitochondrially encoded subunits. The complex has an overall L-shaped structure formed by a peripheral arm and an elongated membrane arm. The peripheral arm containing one FMN and at least three iron-sulphur clusters constitutes the NADH dehydrogenase segment of the electron pathway. The membrane arm with at least one iron-sulphur cluster constitutes the ubiquinone reducing segment. We are studying the assembly of the complex in Neurospora crassa. By disrupting the gene of a nuclear-encoded subunit of the membrane arm a mutant was generated that cannot form complex I. The mutant rather pre-assembles the peripheral arm with all redox groups and the ability to catalyse NADH oxidation by artificial electron acceptors. The final assembly of the membrane arm is blocked in the mutant leading to accumulation of complementary assembly intermediates. One intermediate is associated with a protein that is not present in the fully assembled complex I. The results demonstrate that the two arms of complex I are assembled independently on separate pathways, and gave a first insight into the assembly pathway of the membrane arm. It is also shown for the first time that the obligate aerobic fungus N. crassa can grow and respire without an intact complex I. Gene replacement in this fungus is therefore a tool for investigation of this complex.  相似文献   

19.
James A. Birrell 《FEBS letters》2010,584(19):4247-4252
Three of the conserved, membrane-bound subunits in NADH:ubiquinone oxidoreductase (complex I) are related to one another, and to Mrp sodium-proton antiporters. Recent structural analysis of two prokaryotic complexes I revealed that the three subunits each contain fourteen transmembrane helices that overlay in structural alignments: the translocation of three protons may be coordinated by a lateral helix connecting them together (Efremov, R.G., Baradaran, R. and Sazanov, L.A. (2010). The architecture of respiratory complex I. Nature 465, 441-447). Here, we show that in higher metazoans the threefold symmetry is broken by the loss of three helices from subunit ND2; possible implications for the mechanism of proton translocation are discussed.  相似文献   

20.
We have used the obligate aerobic yeast Yarrowia lipolytica to reconstruct and analyse three missense mutations in the nuclear coded subunits homologous to bovine TYKY and PSST of mitochondrial complex I (proton translocating NADH:ubiquinone oxidoreductase) that have been shown to cause Leigh syndrome (MIM 25600), a severe progressive neurodegenerative disorder. While homozygosity for a V122M substitution in NDUFS7 (PSST) has been found in two siblings with neuropathologically proven Leigh syndrome (R. Triepels et al., Ann. Neurol. 45 (1999) 787), heterozygosity for a P79L and a R102H substitution in NDUFS8 (TYKY) has been found in another patient (J. Loeffen et al., Am. J. Hum. Genet. 63 (1998) 1598). Mitochondrial membranes from Y. lipolytica strains carrying any of the three point mutations exhibited similar complex I defects, with V(max) being reduced by about 50%. This suggests that complex I mutations that clinically present as Leigh syndrome may share common characteristics. In addition changes in the K(m) for n-decyl-ubiquinone and I(50) for hydrophobic complex I inhibitors were observed, which provides further evidence that not only the hydrophobic, mitochondrially coded subunits, but also some of the nuclear coded subunits of complex I are involved in its reaction with ubiquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号