首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Danner BJ  Joern A 《Oecologia》2003,137(3):352-359
In response to increased exposure to predators when searching for food, many prey increase the frequency of antipredator behaviors, potentially reducing foraging rate and food intake. Such direct, nonlethal interactions between predators and prey resulting in reduced food intake can indirectly influence lifecycle development through effects on growth, developmental rate, and survival. We investigated the general hypothesis that individual performance of a herbivorous insect can be negatively affected when exposed to nonlethal predation risk, and that the response can be mediated by food quality. This hypothesis was tested using the common rangeland grasshopper Ageneotettix deorum with and without exposure to common wolf spider predators (Lycosidae, Schizocosa spp.) on both untreated natural and fertilized vegetation. All spiders were rendered temporarily incapable of direct feeding by restricting function of the chelicerae with beeswax. Detectable responses by grasshoppers to spiders indicate indirect consequences for lifecycle development. Grasshopper performance was measured as hind femur growth, duration of nymphal lifecycle stages, and survivorship in a caged field experiment conducted over 2 years. Grasshoppers developed faster and grew 3–5% larger when allowed to forage on fertilized vegetation in the absence of risk from a spider predator. Failure-time analysis illustrated enhanced survival probability in response to elevated food quality and the negative effects of grasshopper susceptibility to nonlethal predation risk. Performance on food of relatively low, ambient quality with no predation risk equaled that of grasshoppers caged with high quality vegetation in the presence of a modified spider. Increased resource quality can clearly moderate the negative life history responses caused by the behavioral modification of grasshoppers when exposed to spider predation risk, a compensatory response.  相似文献   

2.
Abstract.  1. Predators may affect prey populations by direct consumption, and by inducing defensive reactions of prey to the predation risk. Food scarcity frequently has effects on the inducible defences of prey, but no consistent pattern of food–predation risk interaction is known.
2. In this study the combined effect of food shortage and predation-risk perception in larvae of the mosquito Culex pipiens was investigated. Water exposed to the aquatic predator bug Notonecta glauca was used as a source of predation intimidation. Mosquito larvae were reared in three different media containing either no predator cues or the cues of N. glauca that had been fed on either C. pipiens larvae or on Daphnia magna . Food was provided in favourable or limited amount for these set-ups.
3. The results showed that chemical cues from the predators fed with prey's conspecifics caused a decreased survival, delayed pre-imaginal development, and reduction in body size of emerged mosquitoes, whereas chemical cues from predators fed with D. magna caused only delayed development. Food scarcity significantly exacerbates the negative effect of the predator cues on pre-imaginal development of C. pipiens . Effects of the cues on larval development and body size of imagoes are significantly stronger for females than for males.
4. The present study suggests that when food is limited, predators can affect population dynamics of prey not only by direct predation, but also by inducing lethal and sublethal effects due to perception of risk imposed by chemical cues. To understand the effects of predators on mosquito population dynamics, environmental parameters such as food deficiency should be considered.  相似文献   

3.
Predation risk can influence habitat use and activity of potential prey. I explored how the risk of predation by vertebrates influenced the behavior of grasshoppers. I monitored the height in vegetation and the frequency of resting, moving, and feeding behaviors of both tethered and free-ranging grasshoppers under exposure to various predators. Grasshoppers protected from birds remained high in the vegetation, while those protected only from small mammals and lizards remained low in the vegetation. Grasshoppers exposed to all predators occupied an intermediate height. Lower positions in the vegetation were associated with cooler thermal conditions, lower feeding rates, and lower food availability. My results are consistent with the hypothesis that grasshoppers utilize different microhabitats to balance the trade-off between reducing mortality from predators and experiencing greater food availability, and warmer conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Abstract. 1. To investigate the role of intra-guild predation in mediating the impact of the natural enemy complex on herbivore populations, a manipulative field experiment was conducted using uncaged plots (islets of Spartina cordgrass) on a North American salt marsh. The densities (moderate or low) of two invertebrate predators, the generalist wolf spider Pardosa littoralis and the specialist mirid bug Tytthus vagus , were manipulated in a 2 × 2 factorial design, and the resulting treatment effects on the population growth of their herbivorous prey, Prokelisia planthoppers, were assessed.
2. The abundance of wolf spiders on experimental islets was unaffected by the presence of mirid bugs, however the density of mirid bugs was influenced very negatively by the presence of the wolf spider.
3. The negative effect of the wolf spider on mirid bugs most probably resulted from the intra-guild predation of mirids by spiders because planthopper limitation by the wolf spider alone was significantly greater than when both predators were present.
4. As a result of intra-guild predation, planthopper population growth was positive in the presence of both predators, despite the fact that each predator alone promoted a decrease in planthopper population growth.
5. Notably, the occurrence of intra-guild predation diminished top-down impacts on planthopper populations in a relatively simple food web where strong top-down effects were expected. This result, however, was limited to habitats on the marsh with simply structured vegetation lacking leaf litter.  相似文献   

5.
1. Prey interact with multiple kinds of enemies such as predators, parasites, and pathogens. Interactions among enemies can alter prey dynamics but they are often studied separately. 2. During the summers of 2005–2006, we conducted a field experiment to examine interactions among grasshoppers, spider predators, and a lethal fungal pathogen of grasshoppers. Grasshopper nymphs were stocked into field enclosures. Predation was manipulated by adding spiders to enclosures on day 1, day 5, or day 10 of the experiment, or no spiders were added. We monitored grasshopper survival and grasshopper mortality from fungal pathogens for 4 weeks. 3. Fungal pathogens were abundant in 2005 but not in 2006, probably because of favourable weather conditions in 2005. When fungal pathogens were abundant, spider presence reduced grasshopper mortality from fungal pathogens, but only when spiders were present early in the experiment (added on day 1 or day 5). 4. The outcome of predator–prey interactions varied between years, probably as a result of differences in pathogen prevalence. In 2005, spider presence reduced the number of deaths from the pathogen, leading to a slight trend of increased grasshopper density. However, in 2006, when pathogens were not an important source of mortality, spider predation was compensatory.  相似文献   

6.
Abstract.  1. In cannibalistic populations, smaller individuals are subject to predation by larger conspecifics, and small individuals commonly alter their behaviour in response to cannibals. Little is known, however, about the underlying cues that trigger such responses and how the behavioural responses to conspecific cannibals differ from heterospecific predators.
2. This study tests which cues are used for the detection of conspecific predators in the larva of the dragonfly Plathemis lydia and how the behavioural response to cannibals differed from the response to heterospecific predators.
3. Individuals were exposed to chemical cues, visual cues, and a combination of both cues from conspecifics as well as no predator and heterospecific predator controls during which their activity and feeding rates were observed.
4. Individuals increased their activity, spatial movement and feeding behaviour in response to either visual or chemical cues from conspecific predators, which was opposite to responses displayed with cues from heterospecific predators. Interestingly, the responses to visual and chemical cues from conspecifics combined were weaker than to either cue in isolation and similar to the no cue control.
5. The results clearly indicate that individuals are able to use chemical and visual cues to detect even very subtle differences in phenotype of conspecific predators.
6. The opposite response in behaviour when exposed to conspecific cannibals vs. heterospecific predators suggests that the presence of cannibals will increase the mortality risk of small individuals due to heterospecific predation. This risk-enhancement is likely to have important consequences for the dynamics of predator–prey interactions.  相似文献   

7.
Abstract.  1. An organism's growth parameters are expected to depend on environmental constraints, such as predation risk and food supply. However, antipredator responses, food intake, and thus growth of an animal may be mediated by behavioural traits, which are likely to differ among developmental stages. In this study, it was investigated how the relationship between growth and behavioural antipredator responses changes during ontogeny in the time-constrained dragonfly species Libellula depressa , and which factors influenced specific behavioural decisions at different points in ontogeny.
2. The results revealed that behavioural strategies differed between larval developmental sages, depending on associations between larval growth, food supply, and predation risk. Early in ontogeny, faster development was correlated with high larval activity and high food supply. This resulted in high activity levels under high food conditions irrespectively of predator presence, and under low food supply in predator absence only. In the intermediate stage of development, all larvae displayed a high activity level, which was correlated in general with fast development. However, growth later in ontogeny was not only influenced by the activity level, but also by predator presence and food supply, with larvae reared under high food supply and/or in presence of predators attaining a higher final mass. Thus, not only the way in which larval growth parameters and behaviour are related changed during development, but also whether the factors influenced larval growth and behaviour. Once the larvae reached the ultimate stage of development, in which they overwinter, behavioural patterns observed were consistent with model predictions.
3. It is advocated that behavioural plasticity of prey organisms in different developmental stages should be analysed in the context of associated growth variables.  相似文献   

8.
Abstract.  1. Most studies evaluating the combined impact of spiders and other predators on herbivore densities in agroecosystems have focused primarily on their trophic connections with invertebrate predators (e.g. carabids, chrysopids); however linkages among spiders and vertebrate predators may also help structure the population dynamics of insect herbivores. A field experiment was conducted to examine the impact of avian and spider predation on lepidopteran caterpillar densities and plant productivity within a Brassica agroecosystem.
2. Arthropod abundance, leaf-chewing damage, and final plant productivity associated with broccoli, Brassica oleracea L. (var. italica ), were recorded for four treatments: (1) bird present but spiders removed; (2) both birds and spiders present; (3) birds excluded, spiders present; and (4) birds and spiders both excluded.
3. Densities of Artogeia rapae L. (Lepidoptera: Pieridae) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae) large caterpillars and post feeding stages were reduced significantly by bird predation. The abundance of large caterpillars was also reduced on spider-inhabited plants during early plant growth; however the assemblage of birds and spiders did not suppress caterpillar densities more significantly than either predator alone.
4. Plants protected by birds, spiders, and birds plus spiders sustained less folivory attributable to leaf chewing caterpillars than check plants. Plant productivity was also greater for predator-protected plants than check plants.
5. Although spiders and parasitoids were responsible for some of the mortality inflicted upon lepidopteran caterpillars, it was concluded that in this study system, birds are the most important natural enemies of folivores.  相似文献   

9.
Herbivores are squeezed between the two omnipresent threats of variable food quality and natural enemy attack, but these two factors are not independent of one another. The mechanisms by which organisms navigate the dual challenges of foraging while avoiding predation are poorly understood. We tested the effects of plant defense and predation risk on herbivory in an assemblage of leaf-chewing insects on Solanum lycopersicum (tomato) that included two Solanaceae specialists (Manduca sexta and Leptinotarsa decemlineata) and one generalist (Trichoplusia ni). Defenses were altered using genetic manipulations of the jasmonate phytohormonal cascade, whereas predation risk was assessed by exposing herbivores to cues from the predaceous stink bug, Podisus maculiventris. Predation risk reduced herbivore food intake by an average of 29% relative to predator-free controls. Interestingly, this predator-mediated impact on foraging behavior largely attenuated when quantified in terms of individual growth rate. Only one of the three species experienced lower body weight under predation risk and the magnitude of this effect was small (17% reduction) compared with effects on foraging behavior. Manduca sexta larvae, compensated for their predator-induced reduction in food intake by more effectively converting leaf tissue to body mass. They also had higher whole-body lipid content when exposed to predators, suggesting that individuals convert energy to storage forms to draw upon when risk subsides. In accordance with expectations based on insect diet breadth, plant defenses tended to have a stronger impact on consumption and growth in the generalist than the two specialists. These data both confirm the ecological significance of predators in the foraging behavior of herbivorous prey and demonstrate how sophisticated compensatory mechanisms allow foragers to partially offset the detrimental effects of reduced food intake. The fact that these mechanisms operated across a wide range of plant resistance phenotypes suggests that compensation is not always constrained by reduced food quality.  相似文献   

10.
1.  Nest predation negatively affects most avian populations. Studies of nest predation usually group all nest failures when attempting to determine temporal and parental activities, habitat or landscape predictors of success. Often these studies find few significant predictors and interpret patterns as essentially random.
2.  Relatively little is known about the importance of individual predator species or groups on observed patterns of nest success, and how the ecology of these predators may influence patterns of success and failure.
3.  In 2006 and 2007, time-lapse, infrared video systems were deployed at nests of Swainson's warblers ( Limnothlypis swainsonii Audubon) in east-central Arkansas to identify dominant nest predators and determine whether factors predicting predation differed among these predators.
4.  Analysis of pooled data yielded few predictors of predation risk, whereas separate analyses for the three major predator groups revealed clear, but often conflicting, patterns.
5.  Predation by ratsnakes ( Elaphe obsoleta ) and raptors was more common during the nestling period, whereas predation by brown-headed cowbirds ( Molothrus ater ) occurred more during incubation. Additionally, the risk of predation by raptors and cowbirds decreased throughout the breeding season, whereas ratsnake predation risk increased.
6.  Contrary to expectations, predation by ratsnakes and cowbirds was more common far from edges, whereas raptor predation was more common close to agricultural edges.
7.  Collectively, our results suggest that associating specific predators with the nests they prey on is necessary to understand underlying mechanisms.  相似文献   

11.
James J. Krupa  Andrew Sih 《Oecologia》1998,117(1-2):258-265
Many studies have experimentally addressed the effects of a particular predator species on prey behavior. In nature, however, prey frequently face multiple species of predators that often vary in their predatory mode and in their level of predation risk. Relatively few studies have considered prey responses under these complex conditions. In Kentucky, the stream-dwelling water strider (Aquariusremigis) coexists with many potentially dangerous predators, two of which are the green sunfish (Lepomiscyanellus) and the fishing spider (Dolomedesvittatus). Green sunfish occupy stream pools and attack water striders from below. In contrast, fishing spiders hunt along stream shorelines where they perch on overhanging vegetation or rocks and attack water striders near shore. We compared how A. remigis individuals respond to these two very different predators in pools with one or both predators. The presence of sunfish in pools had strong effects on male water strider behavior, including increased use of three types of refuge from sunfish (riffles, climbing out of the water, sitting on the water but at the edges of pools), decreased activity and a decreased number of aggressive males on the water. Spiders also influenced water strider behavior; male water striders avoided spiders by shifting away from the edges of pools. Comparisons of the effects of the two predator species showed that in general, antipredator responses by male water striders were stronger in pools with fish alone than in those with spiders alone. In the presence of both predators, male water strider behavior (microhabitat use and activity) was generally similar to behavior in the presence of fish alone. In contrast, female water striders showed no significant response to the presence of sunfish, and little response to the presence of spiders. This lack of response could be because females spent much of their time in refuges even in the absence of predators (apparently hiding from harassment by males). Both spiders and fish caused decreases in water strider mating activity. The presence of fish reduced both the number of matings per pool (mating frequency), and mean mating durations. Spiders induced a decrease in mean mating duration, but not in mating frequency. The largest reductions in mating activity occurred in pools with both predators present. Pools with either spiders or fish alone suffered 15–20% water strider mortality during our experiment (versus no mortality in predator-free pools). Extant theory suggests that when prey face conflicting microhabitat responses to two predators (as in this study), the predators should have facilitative effects on predation rates (i.e., prey that avoid one predator are often killed by the other and vice versa). Mortality rates in pools with both predators present, however, were not significantly different from that predicted by a null model of multiple predator effects. The lack of predator facilitation can be explained by the compensatory reductions in water strider activity and mating activity in the presence of both predators. Received: 26 August 1996 / Accepted: 12 June 1998  相似文献   

12.
Grasshoppers must gather food while avoiding size-selective predation from other arthropods, especially spiders, potentially leading to a trade-off between foraging and defensive behaviors. This trade-off becomes less intense as prey grow larger and are less susceptible to arthropod predation. Activity budgets were constructed for three nymphal (third- to fifth- instar) and adult life cycle stages of Ageneotettix deorum, a common rangeland grasshopper, for three conditions of predation risk by lycosid spiders (spider absence, spider presence, and presence of a nonlethal, chelicerae-modified spider). In third and fourth instars, exposure to predators resulted in reduced feeding activity, increased time spent in antipredator and defensive behaviors, and reduced general activity compared to individuals not exposed to spiders. No significant shifts in behaviors were observed for fifth-instar nymphs and adult A. deorum in response to spider presence. Activity levels in functional spiders and chelicerae-modified spiders were statistically indistinguishable.  相似文献   

13.
The growth of genetically engineered maize that produces the insecticidal protein Cry3Bb1 from Bacillus thuringiensis ( Bt ) is an effective method to control corn rootworms ( Diabrotica spp.), which are threatening maize production in North America and Europe. In this study, the risk of Cry3Bb1-expressing maize for the predatory spider Theridion impressum , a common species in European maize fields, was assessed. Quantification of Cry3Bb1 in potential prey species collected in Bt maize plots and prey spectrum analysis revealed that T. impressum ingests Cry3Bb1 in the field. Exposure to the Bt protein, however, was highly variable because some potential prey species, such as phloem-feeding herbivores and predators, contained little or no Cry3Bb1, whereas leaf-feeding herbivores contained high concentrations. Adult and juvenile T. impressum spiders were fed with Cry3Bb1-containing food (prey or maize pollen) for 8 weeks in the laboratory to examine the toxicity of the Bt protein. No differences in mortality, weight development or offspring production were observed between spiders provided with food containing or not containing Cry3Bb1. Retrospective power analysis indicated that the bioassays were sufficiently sensitive to detect meaningful differences if present. Although Cry3Bb1 is ingested by the spider in the field, our data provide no evidence for toxicity. Consequently, the growth of corn rootworm-resistant Bt maize appears to pose no risk for T. impressum .  相似文献   

14.
1. Wetland insect predators can structure aquatic prey communities via selective predation, but receive considerably less attention than vertebrate predators. We conducted laboratory experiments to test selective predation by two species of larval dytiscid beetles ( Agabus ; Coleoptera: Dytiscidae) and the potential contribution of these beetles to suppression of mosquito populations in constructed wetlands.
2.  Agabus consumed copepods, ostracods and mosquito larvae in no-choice tests. When offered a choice, 76% of all prey consumed were mosquito larvae, indicating selective predation. Subsequent experiments revealed this preference was due to ease of capture of mosquito larvae over alternative prey.
3. Cannibalism and intraguild predation were common within and between species of Agabus , which may reduce the overall impact of the observed selective predation.
4.  Agabus larvae selectively preyed on mosquito larvae over alternative prey, which is not characteristic of some fish used as biological control agents for mosquitoes. Predator exclusion or similar experiments in the field could document how these results translate into a natural setting.
5. The findings of this study suggest developing mosquito suppression strategies focused on conservation of native wetland predators. These strategies are preferable to introducing non-native generalist predators, or applying pesticides.  相似文献   

15.
Abstract.  1. The high number of potential predatory interactions among the many arthropod generalist predators in terrestrial food webs makes exhaustive testing of interaction strengths by field experiments unfeasible. Thus, correlative patterns and laboratory observations of behaviour often form the basis of inferences about the strength of interaction pathways involving generalist predators (intraguild predation).
2. Previous research has revealed a negative correlation between survival of juvenile wolf spiders of the genus Schizocosa (Lycosidae) and densities of another abundant spider family, the Gnaphosidae.
3. Feeding trials in laboratory microcosms with a leaf-litter substrate revealed that gnaphosids prey on juvenile Schizocosa in a structurally complex habitat.
4. Gnaphosid densities were manipulated in two different field experiments, each conducted in a different year, in order to test directly the hypothesis that intraguild predation by gnaphosids limits densities of juvenile Schizocosa .
5. Reducing numbers of gnaphosids, and doubling their numbers to two times the mean natural density, had no impact on the survival of juvenile Schizocosa in either field experiment. This finding suggests that correlative patterns in nature and feeding trials in the laboratory may at times provide deceptively simple and potentially misleading generalisations about the strengths of interaction pathways in complex networks of generalist predators.  相似文献   

16.
Predators influence prey through consumption, and through trait-mediated effects such as emigration in response to predation risk (risk effects). We studied top-down effects of (sub-) adult wolf spiders (Lycosidae) on arthropods in a meadow. We compared risk effects with the overall top-down effect (including consumption) by gluing the chelicers of wolf spiders to prevent them from killing the prey. In a field experiment, we created three treatments that included either: (i) intact (‘predation’) wolf spiders; (ii) wolf spiders with glued chelicers (‘risk spiders’); or (iii) no (sub-) adult wolf spiders. Young wolf spiders were reduced by their (sub-) adult congeners. Densities of sheetweb spiders (Linyphiidae), a known intraguild prey of wolf spiders, were equally reduced by the presence of risk and predation wolf spiders. Plant- and leafhoppers (Auchenorrhyncha) showed the inverse pattern of higher densities in the presence of both risk and predation wolf spiders. We conclude that (sub-) adult wolf spiders acted as top predators, which reduced densities of intermediate predators and thereby enhanced herbivores. Complementary to earlier studies that found trait-mediated herbivore suppression, our results demonstrate that herbivores can be enhanced through cascading risk effects by top predators.  相似文献   

17.
Prey species and prey diet affect growth of invertebrate predators   总被引:4,自引:0,他引:4  
1. The effects of prey species and leaf age used by prey on performance of two generalist invertebrate predators were studied. The focal plant was Plantago lanceolata , which contains iridoid glycosides.
2. Diet of the herbivorous prey influenced their growth rate.
3. The generalist herbivore ( Vanessa cardui ) and the novel-plant feeder ( Manduca sexta ) contained very low levels of iridoid glycosides in their haemolymph, whereas the specialist ( Junonia coenia ) levels were 50–150-fold higher.
4. Predatory stinkbugs ( Podisus maculiventris ) fed either the novel-plant feeder or the specialist exhibited similar developmental rates. However, stinkbugs ate less of the generalist but grew faster. The growth rate of the stinkbugs was higher when the caterpillar species were raised on the new-leaf powder diet, which contained twice as much protein and iridoid glycosides as the mature-leaf powder diet.
5. Jumping spiders ( Phidippus audax ) ate more mealworms ( Tenebrio molitor ) than specialist J. coenia caterpillars, fed either new- or mature-leaf powder diets, and could not gain weight when fed J. coenia.
6. These results indicate that prey quality was not determined solely by the iridoid glycoside concentration in the diet.  相似文献   

18.
SUMMARY 1. The effects of the carnivorous plant Utricularia ( bladderwort) on its microcrustacean and macroinvertebrate prey were studied under seminatural and natural conditions. The results suggest that Utricularia is a strong interactor in littoral communities that influences its prey populations by direct predation and indirect facilitation.
2. In an 8-week enclosure experiment, effects on prey density were compared in three treatments with (1) U. vulgaris with intact trapbladders, (2) U. vulgaris without bladders and (3) no Utricularia present.
3. Utricularia predation caused a decrease in prey density over time, whereas presence of Utricularia without bladders increased prey density. In the controls without Utricularia , prey density was relatively constant over time.
4. Field samples were collected to quantify predation rates of three Utricularia species on two natural prey populations. Daily consumption rates on prey peaked from mid-July to mid-August for all Utricularia species, but were low in June and September. This pattern was explained mainly by a high number of trapbladders at this time, but also by a slight increase in the number of prey caught per bladder. Per capita prey mortality rates caused by Utricularia were substantial and ranged between 0.14 and 0.43 day−1 for copepods, 0.1–0.27 day−1 for ostracods and 0.04–0.2 day−1 for chydorid cladocerans.
5. Predation and facilitation effects were observed for total prey and separately for epiphytic and benthic prey. Planktonic microcrustaceans showed no response to Utricularia presence.  相似文献   

19.
Søren Toft  David H. Wise 《Oecologia》1999,119(2):191-197
It is often assumed that prey species consumed by generalist predators are largely, though not entirely, equivalent in terms of their value to the predators. In contrast to this expectation, laboratory feeding experiments uncovered distinctly varied developmental responses of a generalist predator, the wolf spider Schizocosa, to different experimental diets. Naive Schizocosa attacked and fed upon all the prey species offered; however, highly divergent patterns of survival, development, and growth of Schizocosa spiderlings reared on different single-prey diets revealed a wide spectrum of prey qualities. Spiderlings fed the collembolan Tomocerus bidentatus sustained the highest overall rates of survival, growth, and development. Fruit flies (Drosophila melanogaster) were intermediate-quality prey: spiders fed Drosophila initially exhibited rates of survival, growth, and development equal to those of spiders on a diet of T. bidentatus, but after about 3 months, rates declined markedly. Fungus gnats (Sciaridae; Bradysia sp.) and conspecfic spiderlings are low-quality prey for Schizocosa: a sole diet of either of these prey types resulted in positive but markedly submaximal rates of growth, retarded rates of development, and survival rates much lower than that supported by a diet of Drosophila. Worst were the collembolans Folsomia candida and Isotoma trispinata, and the aphid Aphis nerii: spiderlings fed solely one of these species did not grow and died without molting. A. nerii is classified as poor quality because survival was no better than that of starved controls. F. candida and I. trispinata were toxic: survival of Schizocosa hatchlings fed these collembolans was lower than that of starved controls. A mixed diet of T. bidentatus and fruit flies yielded positive synergistic effects with respect to growth, but development and rate of survival were similar to those of spiders on a sole diet of T. bidentatus. Including toxic prey did not produce a better diet, while inclusion of toxic prey with prey of higher quality created diets that were no better than the toxic prey alone. The results of these experiments suggest that prey species that are similar in morphology and behavior, and that are initially killed and consumed, may differ dramatically in their suitability as food for generalist arthropod predators. Received: 29 July 1998 / Accepted: 1 February 1999  相似文献   

20.
Compensatory or catch‐up growth following growth impairment caused by transient environmental stress, due to adverse abiotic factors or food, is widespread in animals. Such growth strategies commonly balance retarded development and reduced growth. They depend on the type of stressor but are unknown for predation risk, a prime selective force shaping life history. Anti‐predator behaviours by immature prey typically come at the cost of reduced growth rates with potential negative consequences on age and size at maturity. Here, we investigated the hypothesis that transient intraguild predation (IGP) risk induces compensatory or catch‐up growth in the plant‐inhabiting predatory mite Phytoseiulus persimilis. Immature P. persimilis were exposed in the larval stage to no, low or high IGP risk, and kept under benign conditions in the next developmental stage, the protonymph. High but not low IGP risk prolonged development of P. persimilis larvae, which was compensated in the protonymphal stage by increased foraging activity and accelerated development, resulting in optimal age and size at maturity. Our study provides the first experimental evidence that prey may balance developmental costs accruing from anti‐predator behaviour by compensatory growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号