首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
The role of autophosphorylation in modulation of erbB-2 transforming function   总被引:11,自引:0,他引:11  
The product of the erbB-2 gene is a 185-kD receptor-like glycoprotein. erbB-2 gp185 displays constitutive tyrosine kinase activity and transforms NIH 3T3 cells when expressed 100-fold over the normal levels. We have analyzed the role of tyrosine kinase function and of receptor autophosphorylation in the regulation of erbB-2 biological activity. Abolition of erbB-2 gp185 tyrosine kinase function resulted in complete loss of its transforming activity and the absence of in vivo tyrosine phosphorylation. The steady-state content of phosphotyrosine in erbB-2 gp185 was found to be solely dependent on receptor autophosphorylation and to be dependent on the specific enzymatic activity of the erbB-2 protein. The major sites of erbB-2 autophosphorylation were shown to be in its COOH-terminal domain. Biological analysis of erbB-2 mutants containing either individual or multiple Tyr----Phe substitutions at the potential sites of autophosphorylation revealed that autophosphorylation upregulates erbB-2 gp185 transforming activity. Autophosphorylation did not modulate receptor turnover. A Tyr----Phe substitution of erbB-2 Tyr-877 homologous to pp60c-src Tyr-416 did not alter erbB-2 biological and biochemical properties, thus excluding the possibility that phosphorylation of this residue, located in the kinase domain, modulates erbB-2 gp185 catalytic function. Hence, autophosphorylation of tyrosine residues localized in its COOH terminus appears to be required for optimal coupling of erbB-2 gp185 with its mitogenic pathway.  相似文献   

2.
The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.  相似文献   

3.
The erbB-2 gene product, gp185erbB-2, displays a potent transforming effect when overexpressed in NIH 3T3 cells. In addition, it possesses constitutively high levels of tyrosine kinase activity in the absence of exogenously added ligand. In this study, we demonstrate that its carboxy-terminal domain exerts an enhancing effect on erbB-2 kinase and transforming activities. A premature termination mutant of the erbB-2 protein, lacking the entire carboxy-terminal domain (erbB-2 delta 1050), showed a 40-fold reduction in transforming ability and a lowered in vivo kinase activity for intracellular substrates. When the carboxy-terminal domain of erbB-2 was substituted for its analogous region in the epidermal growth factor receptor (EGFR) (EGFR/erbB-2COOH chimera), it conferred erbB-2-like properties to the EGFR, including transforming ability in the absence of epidermal growth factor, elevated constitutive autokinase activity in vivo and in vitro, and constitutive ability to phosphorylate phospholipase C-gamma. Conversely, a chimeric erbB-2 molecule bearing an EGFR carboxy-terminal domain (erbB-2/EGFRCOOH chimera) showed reduced transforming and kinase activity with respect to the wild-type erbB-2 and was only slightly more efficient than the erbB-2 delta 1050 mutant. Thus, we conclude that the carboxy-terminal domains of erbB-2 and EGFR exert different regulatory effects on receptor kinase function and biological activity. The up regulation of gp185erbB-2 enzymatic activity exerted by its carboxy-terminal domain can explain, at least in part, its constitutive level of kinase activity.  相似文献   

4.
Overexpression of the erbB-2/neu gene is frequently detected in human cancers. When overexpressed in NIH 3T3 cells, the normal erbB-2 product, gp185erbB-2, displays potent transforming ability as well as constitutively elevated levels of tyrosine kinase activity in the absence of exogenously added ligand. To investigate the basis for its chronic activation we sought evidence of a ligand for gp185erbB-2 either in serum or produced by NIH 3T3 cells in an autocrine manner. We demonstrate that a putative ligand for gp185erbB-2 is not contained in serum. Chimeric molecules composed of the extracellular domain of gp185erbB-2 and the intracellular portion of the epidermal growth factor receptor (EGFR) did not show any transforming ability or constitutive autophosphorylation when they were expressed in NIH 3T3 cells. However, they were able to transduce a mitogenic signal when triggered by a monoclonal antibody directed against the extracellular domain of erbB-2. These results provide evidence against the idea that an erbB-2 ligand is produced by NIH 3T3 cells. Furthermore, we obtained direct evidence of the constitutive enzymative activity of gp185erbB-2 by demonstrating that the erbB-2 kinase remained active in a chimeric configuration with the extracellular domain of the EGFR, in the absence of any detectable ligand for the EGFR. Thus, under conditions of overexpression, the normal gp185erbB-2 is a constitutively active kinase able to transform NIH 3T3 cells in the absence of ligand.  相似文献   

5.
The epidermal growth factor receptor (EGF-R) and the erbB-2 proto-oncogene product protein are closely related by their structural homology and their shared enzymatic activity as autophosphorylating tyrosine kinases. We show that in mammary tumor cells (SK-BR-3) EGF causes a rapid increase in tyrosine phosphorylation of the erbB-2 protein. Phosphorylation of erbB-2 does not occur in cells lacking the EGF-R (MDA-MB-453). Phosphorylation of erbB-2 in SK-BR-3 cells is blocked if EGF is prevented from interacting with its receptor by specific monoclonal antibodies. While EGF induces the down-regulation of its receptor in SK-BR-3 cells, EGF has no effect on the stability of the erbB-2 protein. This result suggests that the erbB-2 protein is a substrate of the EGF-R and indicates the possibility of communication between these two proteins early in the signal transduction process.  相似文献   

6.
The neu/erbB-2 protooncogene encodes a transmembrane tyrosine kinase homologous to receptors for polypeptide growth factors. The oncogenic potential of the presumed receptor is released through multiple genetic mechanisms including a point mutation, truncation of non-catalytic sequences and overexpression. The latter mechanism appears to be relevant to human cancers as elevated expression of the neu/erbB-2 gene is frequently observed in solid tumors of various adenocarcinomas. It is therefore conceivable that strategies aimed at the biochemical mechanism of action of the neu/erbB-2 tyrosine kinase may contribute to the treatment of certain human cancers. To this aim we undertook a multiple research approach consisting of the following directions: (i) The neu/erbB-2 ligand--a systematic screening of potential biological sources of the hypothetical hormone molecule, that presumably binds to the neu/erbB-2 protein, resulted in detection of a candidate activity in the medium of certain cultured transformed cells. Partial purification indicated that the factor is a 30-35 kDa glycoprotein. Further studies revealed several biochemical characteristics of the factor that may be helpful for complete purification and structural analysis of this novel hormone. (ii) Signal transduction by neu/erbB-2--using a chimeric receptor approach and various mutants we found that all the oncogenic forms of the neu/erbB-2 are constitutively coupled, both physically and functionally, to a multi-protein complex of signaling molecules. The latter includes the phosphatidylinositol-specific phospholipase C gamma and a phosphatidylinositol kinase. Thus, the metabolism of inositol lipids is probably a major biochemical pathway utilized by the neu/erbB-2 tyrosine kinase. (iii) Tumor inhibitory antibodies--we generated a panel of monoclonal antibodies to the presumed receptor. Surprisingly, some antibodies almost completely inhibited the growth of tumor cells in athymic mice, whereas one antibody significantly accelerated the rate of tumor growth in animals. Interestingly, the inhibitory antibodies conferred a mature phenotype to cultured breast cancer cells, implicating terminal differentiation in tumor retardation.  相似文献   

7.
The epidermal growth factor receptor (EGFR) and gp185erbB-2 are closely related tyrosine kinases. Despite extensive sequence and structural homology, these two receptors display quantitative and qualitative differences in their ability to couple with mitogenic signalling pathways. By using chimeric molecules between EGFR and erbB-2, we found that the determinants responsible for the specificity of mitogenic signal transduction are located in the amino-terminal half of the tyrosine kinase domain of either receptor. In the EGFR, mutational analysis within this subdomain revealed that deletion of residues 660 to 667 impaired receptor mitogenic activity without affecting its tyrosine kinase properties. This sequence is therefore likely to contribute to the specificity of substrate recognition by the EGFR kinase.  相似文献   

8.
R Goldman  R B Levy  E Peles  Y Yarden 《Biochemistry》1990,29(50):11024-11028
The erbB-1 and erbB-2 protooncogenes encode homologous membrane receptors that respectively bind epidermal growth factor (EGF) and a still incompletely characterized ligand. Binding of EGF to its receptor is known to increase tyrosine phosphorylation of the erbB-2/neu receptor in tumor cells. To investigate the mechanism of this transregulatory pathway, we analyzed the interactions between the two receptors in SKBR-3 human breast carcinoma cells. Chemical cross-linking of 125I-labeled EGF revealed that the radiolabeled EGF receptor coimmunoprecipitates with the erbB-2/neu receptor. In addition a cross-linked species of 360-kdalton molecular mass is also coimmunoprecipitated. The formation of the latter species is absolutely dependent on the presence of EGF receptor and thus appears to represent a heterodimer of the erbB-1 and erbB-2 receptors. In vitro kinase reaction assays revealed that receptor heterodimerization is induced by EGF binding and leads to a dramatic increase in the self-phosphorylation capacity of the dimerized receptors. Moreover, analysis of living SKBR-3 cells suggested that most of the EGF-induced transregulation of the erbB-2/neu receptor is due to receptor heterodimerization. In conclusion, heterodimers of erbB-1 and erbB-2 receptors may provide a mechanism for dual transductory functions of growth factors of breast tumor cells.  相似文献   

9.
It is now clear that astroglial cells actively contribute to both the generation and flow of information within the central nervous system. In the hypothalamus, astrocytes regulate the secretory activity of neuroendocrine neurons. A small subset of these neurons secrete luteinizing hormone-releasing hormone (LHRH), a neuropeptide essential for sexual development and adult reproductive function. Astrocytes stimulate LHRH secretion via cell-cell signaling mechanisms involving growth factors recognized by receptors with either serine/threonine or tyrosine kinase activity. Two members of the epidermal growth factor (EGF) family and their respective tyrosine kinase receptors appear to play key roles in this regulatory process. Transforming growth factor-alpha (TGFalpha) and its distant congeners, the neuregulins (NRGs), are produced in hypothalamic astrocytes. They stimulate LHRH secretion indirectly, via activation of erbB-1/erbB-2 and erbB-4/erbB-2 receptor complexes also located on astrocytes. Activation of these receptors leads to release of prostaglandin E(2) (PGE(2)), which then binds to specific receptors on LHRH neurons to elicit LHRH secretion. Gonadal steroids facilitate this glia-to-neuron communication process by acting at three different steps along the signaling pathway. They (a) increase astrocytic gene expression of at least one of the EGF-related ligands (TGFalpha), (b) increase expression of at least two of the receptors (erbB-4 and erbB-2), and (c) enhance the LHRH response to PGE(2) by up-regulating in LHRH neurons the expression of specific PGE(2) receptor isoforms. Focal overexpression of TGFalpha in either the median eminence or preoptic area of the hypothalamus accelerates puberty. Conversely, blockade of either TGFalpha or NRG hypothalamic actions delays the process. Thus, both TGFalpha and NRGs appear to be physiological components of the central neuroendocrine mechanism controlling the initiation of female puberty. By facilitating growth factor signaling pathways in the hypothalamus, ovarian steroids accelerate the pace and progression of the pubertal process.  相似文献   

10.
We have isolated a gene from stomach fibroblasts encoding novel proteins containing two follistatin modules which might bind TGF-beta-related growth factors and a single epidermal growth factor (EGF)-like domain which is closely related to EGF/Neuregulin (NRG) family growth factors. Sequence analysis revealed novel cDNA clones, the protein products of which were designated tomoregulin (TR) and consisted of at least three isoforms which were distinguished by their cytoplasmic domains. The cytoplasmic domains in all isoforms were short and contained potential G-protein activating motifs. Precursors of TR (Pro-TR) are glycosylated transmembrane proteins. Two secreted soluble forms resulting from proteolytic cleavage were distinguished by the presence or absence of the EGF-like domain. The EGF-like domain of TR was highly conserved compared to EGF/NRG family growth factors with the exception of an arginine to histidine substitution at position 39 (Arg --> His 39). Soluble TR stimulated erbB-4 tyrosine phosphorylation in MKN 28 gastric cancer cells, although it was weak compared to neuregulin-induced erbB-4 tyrosine phosphorylation; this suggests that TR might be a ligand for erbB-4- or erbB-4-related receptor tyrosine kinase. TR may have important roles in normal development of middle to late stages of embryos and maintenance of adult central nervous system tissues as high expression of TR mRNAs was observed in these tissues. The modular features suggest multiple roles for TR; these include functioning as a ligand for erbB- receptor, a regulator of TGF-beta-related growth factor signaling by direct interaction through the follistatin modules, and a G-protein-coupled receptor.  相似文献   

11.
The HER-2/erbB-2/c-neu proto-oncogene encodes for an EGF receptor-like protein which has been implicated in the pathogenesis of several human malignancies. Although much has been learned about the physiological significance of this receptor tyrosine kinase, its catalytic mechanism remains poorly understood. We have expressed, purified, and characterized two recombinant proteins corresponding to a full-length (HCD) and truncated (HKD) construct of the HER-2 intracellular tyrosine kinase domain and have identified an optimal substrate (GGMEDIYFEFMGGKKK; HER2Peptide) through screening of a degenerate peptide library. We have conducted a transient kinetic analysis of the HER-2 proteins (HCD and HKD) to illuminate mechanistic details of the HER-2 pathway. In particular, stopped-flow fluorescence studies with mant (N-methylanthraniloyl)-nucleotide derivatives provided direct measurements of the association and dissociation rate constants for these nucleotide interactions with the HER-2 recombinant proteins, thereby enabling the determination of nucleotide K(d) values. Moreover, the actual step of chemical catalysis was isolated using rapid chemical quench techniques and shown to occur approximately 3-fold faster than the steady-state rate which corresponds to product release. Evidence is also provided that suggests a conformational change that is partially rate-limiting at least in HCD. Furthermore, the role that the phosphorylation state of the protein may play on catalysis was examined. Studies carried out with pre-phosphorylated recombinant HER-2 proteins suggest that while autophosphorylation is not a prerequisite for enzymatic activity, this protein modification actually directly affects the catalytic mechanism by enhancing the rate of ADP release and that of the rate-limiting step. While a pre-steady-state kinetic analysis has been carried out on the catalytic subunit of cAMP-dependent serine/threonine kinase, to our knowledge, this study represents the first reported transient kinetic investigation of a receptor tyrosine kinase. This work serves as a basis for comparison of these two important protein kinase families and in this report we highlight these similarities and differences.  相似文献   

12.
The neu differentiation factors/heregulins (HRGs) comprise a family of polypeptide growth factors that activate p185(erbB-2) through direct binding to either erbB-3 or erbB-4 receptor tyrosine kinases. We have previously shown that HRG-beta is mitogenic for various human mammary epithelial cell lines that coexpress c-erbB-2 and c-erbB-3. Phosphatidylinositol 3-kinase (PI3K) is activated by p185(erbB-2) /erbB-3 heterodimers in cells stimulated by HRG, and PI3K is constitutively activated by p185(erbB-2) /erbB-3 in breast carcinoma cells that overexpress c-erbB-2. To better understand the relative abilities of HRGs, epidermal growth factor (EGF), or insulin to activate PI3K under normal physiological conditions, we compared the levels of recruitment of the 85-kDa regulatory subunit of PI3K when activated by the type I (erbB) or type II [insulin-like growth factor (IGF)] receptor tyrosine kinases in two different nontransformed human mammary epithelial cell lines. The nontransformed H16N-2 cells isolated from normal tissue express EGFR, p185(erbB-2), and erbB-3, and are highly responsive to the mitogenic effects of HRG-beta as well as to the combination of EGF and insulin in serum-free culture. We measured the stoichiometry of p85 recruited by tyrosine-phosphorylated proteins induced in H16N-2 cells by either the alpha or the beta isoform of HRG. HRG-beta was greater than 10-fold more potent in inducing p85 recruitment than was the less biologically active HRG-alpha isoform. HRG-beta was also a more potent inducer of p85 recruited by tyrosine-phosphorylated proteins than was either EGF, insulin, or EGF and insulin combined. Furthermore, erbB-3 principally mediated the direct recruitment of p85 in cells stimulated by HRG or EGF, indicating that, in addition to the high-level activation of PI3K by p185(erbB-2) / erbB-3, EGFR/erbB-3 heterodimer interaction is essential for the weak but significant level of PI3K activated by EGF in cells that express normal EGFR levels. Studies using the PI3K inhibitor wortmannin also indicated that PI3K activation was required for the proliferation of H16N-2 cells induced by either HRG-beta or EGF and insulin in serum-free culture. Finally, HRG-beta was also an especially potent inducer of PI3K in the nontransformed MCF-10A cells, which were derived spontaneously from normal reduction mammoplasty tissue. These data show, for the first time, a side-by-side quantitative comparison of the relative degree of PI3K activated by different growth factors in nontransformed growth factor-dependent cells under precisely defined conditions in culture.  相似文献   

13.
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein.  相似文献   

14.
p185neu is a receptor-like protein encoded by the neu/erbB-2 proto-oncogene. This protein is closely related to the epidermal growth factor (EGF) receptor, but does not bind EGF. We report here that incubation of Rat-1 cells with EGF stimulates tyrosine phosphorylation of p185. This effect is specific to EGF since neither platelet derived growth factor (PDGF) nor insulin, which also bind to receptors with ligand-stimulated tyrosine kinase activity, induced tyrosine phosphorylation of p185. The EGF-stimulated tyrosine phosphorylation of p185 and of the EGF receptor occurred with similar kinetics and EGF dose-responses, and both phosphorylations were prevented by down-regulation of the EGF receptor with EGF. Since p185 does not bind EGF, these results suggested that p185 is a substrate for the EGF receptor kinase. Incubation of cells with EGF before lysis stimulated the tyrosine phosphorylation of p185 in immune complexes. This suggested that EGF, acting through the EGF receptor, can regulate the intrinsic kinase activity of p185.  相似文献   

15.
Recently, a family of growth factors has been described that activates erbB-2 receptors. These factors, known as the neu differentiation factors (NDF) or heregulins (HRG), induce tyrosine phosphorylation of erbB-2 receptors as a result of their direct interaction with either erbB-3 or erbB-4 receptors. Although it is known that expression of erbB-2 receptors has relevance in human breast cancer progression, how erbB-2, -3 and -4 receptors regulate mammary epithelial cell proliferation is not known. Therefore, experiments were carried out to study the mitogenic activity of NDF/HRG on the human mammary epithelial cell line MCF-10A which can be cultured continuously under serum-free conditions. MCF-10A cells, like primary cultures of normal human mammary epithelial cells, express an absolute requirement for exogenous epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) for growth. The results of these experiments indicate that NDF/HRG can induce tyrosine phosphorylation of p185erbB-2 in MCF-10A cells and is mitogenic for these cells. This is consistent with the coexpression of erbB-2 and erbB-3 mRNA that we have observed in MCF-10A cells. In addition, we found that NDF/HRG can substitute for either EGF or IGF-I to stimulate proliferation of these cells. The ability to substitute for both EGF and IGF-I is a unique property of NDF/HRG and is not shared by other members of the EGF or IGF family of growth factors, nor by other factors that we have studied. A striking isoform specificity was also observed which indicated that the β-isoforms of NDF/HRG were greater than ten times more mitogenic than the α-isoforms. We also examined the mitogenic activity of NDF/HRG on MCF-10A cells that overexpress the erbB-2 receptor as a result of infection with a retroviral vector containing the human c-erbB-2 gene (MCF-10AerbB-2 cells). These studies indicated that MCF-10AerbB-2 cells have increased sensitivity to the mitogenic effects of NDF/HRG and that these cells are responsive to the α-isoforms of NDF/HRG at physiological concentrations. Thus, NDF/HRG is a dual specificity growth factor for human mammary epithelial cells, and the responsiveness of the cells to NDF/HRG is influenced by the level of expression of erbB-2 receptors. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Responses to G protein-coupled receptor stimulation may be mediated by paracrine factors. We have developed a coculture system to study paracrine regulation of migration of gastric epithelial (AGS) cells after stimulation of gastrin-CCK(B) receptors. In cells expressing this receptor, G-17 stimulated migration by activation of protein kinase C. However, G-17 also stimulated the migration of cells expressing green fluorescent protein, but not the receptor, when they were cocultured with receptor-expressing cells consistent with activation of paracrine signals. The use of various pharmacological inhibitors indicated that gastrin stimulated migration via activation of the EGF receptor (EGR-R), the erbB-2 receptor tyrosine kinase, and the MAP kinase pathway. However, gastrin also released fibroblast growth factor (FGF)-1, and migration was inhibited by the FGF receptor tyrosine kinase inhibitor SU-5402. Flow cytometry indicated that in both cell types, gastrin increased MAP kinase via activation of EGF-R but not FGF-R1 or erbB-2. We conclude that gastrin-CCK(B) receptors stimulate epithelial cell migration partly via paracrine mechanisms; transactivation of EGF-R is only one component of the paracrine pathway.  相似文献   

17.
SH2 domain proteins are important components of the signal transduction pathways activated by growth factor receptor tyrosine kinases. We have been cloning SH2 domain proteins by bacterial expression cloning using the tyrosine phosphorylated C-terminus of the epidermal growth factor receptor as a probe. One of these newly cloned SH2 domain proteins, GRB-7, was mapped on mouse chromosome 11 to a region which also contains the tyrosine kinase receptor, HER2/erbB-2. The analogous chromosomal locus in man is often amplified in human breast cancer leading to overexpression of HER2. We find that GRB-7 is amplified in concert with HER2 in several breast cancer cell lines and that GRB-7 is overexpressed in both cell lines and breast tumors. GRB-7, through its SH2 domain, binds tightly to HER2 such that a large fraction of the tyrosine phosphorylated HER2 in SKBR-3 cells is bound to GRB-7. GRB-7 can also bind tyrosine phosphorylated SHC, albeit at a lower affinity than GRB2 binds SHC. We also find that GRB-7 has a strong similarity over > 300 amino acids to a newly identified gene in Caenorhabditis elegans. This region of similarity, which lies outside the SH2 domain, also contains a pleckstrin homology domain. The presence of evolutionarily conserved domains indicates that GRB-7 is likely to perform a basic signaling function. The fact that GRB-7 and HER2 are both overexpressed and bound tightly together suggests that this basic signaling pathway is greatly amplified in certain breast cancers.  相似文献   

18.
An expression cloning method which allows direct isolation of cDNAs encoding substrates for tyrosine kinases was applied to the study of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway. A previously undescribed cDNA was isolated and designated eps15. The structural features of the predicted eps15 gene product allow its subdivision into three domains. Domain I contains signatures of a regulatory domain, including a candidate tyrosine phosphorylation site and EF-hand-type calcium-binding domains. Domain II presents the characteristic heptad repeats of coiled-coil rod-like proteins, and domain III displays a repeated aspartic acid-proline-phenylalanine motif similar to a consensus sequence of several methylases. Antibodies specific for the eps15 gene product recognize two proteins: a major species of 142 kDa and a minor component of 155 kDa, both of which are phosphorylated on tyrosine following EGFR activation by EGF in vivo. EGFR is also able to directly phosphorylate the eps15 product in vitro. In addition, phosphorylation of the eps15 gene product in vivo is relatively receptor specific, since the erbB-2 kinase phosphorylates it very inefficiently. Finally, overexpression of eps15 is sufficient to transform NIH 3T3 cells, thus suggesting that the eps15 gene product is involved in the regulation of mitogenic signals.  相似文献   

19.
The human erbB-2 oncogene encodes a tyrosine kinase receptor. A ligand for the erbB-2 receptor (gp30), with an apparent molecular weight of 30,000, was reported to modulate the growth of cells overexpressing erbB-2. Whereas low concentrations of gp30 induced proliferation of these cells, higher concentrations inhibited their growth. To elucidate the cellular mechanisms underlying cell growth inhibition by gp30, we tested the effect of this ligand on cell growth and differentiation of the human breast cancer cells AU-565 and MDA-MB-453 (which overexpress erbB-2) and MCF-7 cells (which express low levels of this protooncogene). Ligand concentrations that inhibited growth in cells overexpressing erbB-2 induced apparent differentiation of cells with a more mature phenotype, i.e., with characteristics such as inhibited cell growth, altered cytoplasmic and nuclear morphology, and increased synthesis of milk components (casein and lipids). No significant effect of the ligand was observed in the human breast cancer cell line MCF-7. Concomitant with the induction of differentiation in AU-565 and MDA-MB-453 cells, the erbB-2 protein was translocated from membrane to the cytoplasm and perinuclear sites. These findings indicate that ligand-induced growth inhibition in cells overexpressing erbB-2 is associated with an apparent induction of differentiation.  相似文献   

20.
Synthesis of (2R)-2-carboxymethyl-3-(4-(phosphonomethyl)phenyl) proprionic acid (5) in tert-butyl-protected form (6) and its use for the preparation of a Grb2 SH2 domain-directed tripeptide (8a) is reported. In extracellular ELISA-based assays, 8a exhibits potent Grb2 SH2 domain binding affinity (IC(50)=8 nM). Against cultures of MDA-MB-453 breast cancer cells, which over-express erbB-2 tyrosine kinase, 8a is also antimitogenic at concentrations equivalent to those required to inhibit intracellular association of Grb2 protein with phosphorylated p185(erbB-2) protein (IC(50)=8 microM). Analogue 6 may be useful for the preparation of a variety of phosphatase-stable SH2 domain-directed ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号