首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative analysis is one of the most powerful methods available for understanding the diverse and complex systems found in biology, but it is often limited by a lack of comprehensive taxonomic sampling. Despite the recent development of powerful genome technologies capable of producing sequence data in large quantities (witness the recently completed first draft of the human genome), there has been relatively little change in how evolutionary studies are conducted. The application of genomic methods to evolutionary biology is a challenge, in part because gene segments from different organisms are manipulated separately, requiring individual purification, cloning, and sequencing. We suggest that a feasible approach to collecting genome-scale data sets for evolutionary biology (i.e., evolutionary genomics) may consist of combination of DNA samples prior to cloning and sequencing, followed by computational reconstruction of the original sequences. This approach will allow the full benefit of automated protocols developed by genome projects to be realized; taxon sampling levels can easily increase to thousands for targeted genomes and genomic regions. Sequence diversity at this level will dramatically improve the quality and accuracy of phylogenetic inference, as well as the accuracy and resolution of comparative evolutionary studies. In particular, it will be possible to make accurate estimates of normal evolution in the context of constant structural and functional constraints (i.e., site-specific substitution probabilities), along with accurate estimates of changes in evolutionary patterns, including pairwise coevolution between sites, adaptive bursts, and changes in selective constraints. These estimates can then be used to understand and predict the effects of protein structure and function on sequence evolution and to predict unknown details of protein structure, function, and functional divergence. In order to demonstrate the practicality of these ideas and the potential benefit for functional genomic analysis, we describe a pilot project we are conducting to simultaneously sequence large numbers of vertebrate mitochondrial genomes.  相似文献   

2.
Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC). Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i) a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii) the alignment-based method implemented in the GENECONV program. One-quarter (25.4%) of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.  相似文献   

3.
Rhee JS  Kim RO  Kim BM  Dahms HU  Lee JS 《Gene》2012,505(1):108-113
Information of genome structure with its size variation may provide important clues for evolutionary processes at lower taxon level in eukaryotes. Here, we analyzed the compact genome structure of the monogonont rotifer, Brachionus koreanus in the light of transphyletic genome comparison and economic genome usage. To confirm the genome compactness of B. koreanus, we compared the genomic structure of several selected genes with those of human and pufferfish. For example, one of the large genes, DNA-dependent protein kinase (DNA-PK) with dimeric protein Ku70 and Ku80, showed high similarity, even though genomic DNA lengths were quite different. The replication protein As (RPAs) as a heterotrimeric protein also showed a compact genomic structure including all the essential domains and motifs in B. koreanus. Regarding transmembrane protein-containing genes, the B. koreanus P-glycoprotein (P-gp) showed exactly the same topology of the TM domain compared to those of human and pufferfish, even though it had a compact genome structure. In addition, the gene structure of an inducible repair enzyme O(6)-methylguanine DNA methyltransferase (O(6)-MGMT) of B. koreanus showed the highest compactness among the genes tested. The objective of this report is to evaluate the potential for whole genome sequencing and functional genomic research using the monogonont rotifer B. koreanus as a non-model organism that plays important roles in aquatic food-webs. Subsequently, we discussed possible reasons for compact genome structures as well as small and fewer introns from several perspectives. We conclude that the small size genome of B. koreanus would make this species potentially useful for comparative genome structure analysis of non-model species through whole genome sequencing and genetic mapping.  相似文献   

4.
Artificial selection (domestication and breeding) leaves a strong footprint in plant genomes. Second generation high throughput DNA sequencing technologies make it possible to sequence the gene complement of a plant genome within 3 to 5 months, and the costs of doing so are declining very quickly. This makes it practical to identify genomic regions that have undergone very strong selection. Available reference sequences of important crops such as rice, maize, and sorghum will promote the wide use of re-sequencing strategies in these crops. Marker/trait associations, especially haplotype (or haplotype block) association analyses, will help the precise mapping of important genomic regions and location of favored alleles or haplotypes for breeding. This mini-review examines a genomics approach to defining yield traits in wheat.  相似文献   

5.
The EpiGRAPH web service enables biologists to uncover hidden associations in vertebrate genome and epigenome datasets. Users can upload sets of genomic regions and EpiGRAPH will test multiple attributes (including DNA sequence, chromatin structure, epigenetic modifications and evolutionary conservation) for enrichment or depletion among these regions. Furthermore, EpiGRAPH learns to predictively identify similar genomic regions. This paper demonstrates EpiGRAPH's practical utility in a case study on monoallelic gene expression and describes its novel approach to reproducible bioinformatic analysis.  相似文献   

6.
Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations.  相似文献   

7.
The sequencing of the human genome is well underway. Technology has advanced, such that the total genomic sequence is possible, along with an extensive catalogue of genes via comprehensive cDNA libraries. With the recent completion of the Saccharomyces cerevisiae sequencing project and the imminent completion of that of Caenorhabditis elegans, the most frequently asked question is how much can sequence data alone tell us? The answer is that that a DNA sequence taken in isolation from a single organism reveals very little. The vast majority of DNA in most organisms is noncoding. Protein coding sequences or genes cannot function as isolated units without interaction with noncoding DNA and neighboring genes. This genomic environment is specific to each organism. In order to understand this we need to look at similar genes in different organisms, to determine how function and position has changed over the course of evolution. By understanding evolutionary processes we can gain a greater insight into what makes a gene and the wider processes of genetics and inheritance. Comparative genomics (with model organisms), once the poor relation of the human genome project, is starting to provide the key to unlock the DNA code.  相似文献   

8.
9.
Leeb T  Müller M 《Gene》2004,343(2):239-244
The human intercellular adhesion molecule gene (ICAM) cluster is located in a GC-rich and gene-rich region on HSA 19p13.2. We determined the complete DNA sequence of a 185-kb porcine bacterial artificial chromosome (BAC) clone containing parts of the ICAM gene cluster. We used the porcine sequence for a detailed comparative analysis between human, pig, mouse and rat. The 185 kb of porcine sequence covered 220 kb of homologous sequence in the human genome, which adds to the growing evidence that the porcine genome is somewhat smaller than the human genome. The genomic sequences of the four species showed a high level of conserved synteny and no rearrangements in gene order were observed. During evolution, the ICAM3 gene was inactivated by mutation in the mouse and rat genome, whereas it is still present in the human and pig genome. The loss of Icam3 in rodent genomes might be relevant for rodent-specific properties of the T-cell-mediated immune response. All the other investigated genes are conserved across all four investigated sequences.  相似文献   

10.
Novel methods allowing to analyze the human genome make it possible to assess old questions such as the molecular basis of structural chromosome anomalies and the diathesis to aneuploidy. The architecture of the human genome as unravelled by the human genome sequencing project allows to explain the recurrence of microdeletions and microduplications caused by a non allelic homologous recombination involving segmental duplications created during the evolution of primates. This structural feature of the human genome is associated with a novel class of genetic diseases called genomic disorders as opposed to genetic diseases due to gene mutations. The study of the parental and cellular origin of aneuploidy shed new light on the different mechanisms controlling meiosis in man and woman. In addition it contributes to define the role of maternal age and genetic recombination on the behavior of chromosomes during meiosis. These new data greatly contribute to our understanding of human chromosomal diseases.  相似文献   

11.
随着人类基因组和一些模式生物、重要经济生物以及大量微生物基因组测序的完成,生物学整体研究业已进入基因组时代.最近5~10年以来,利用基因组结构信息进行系统发育推断的研究形成了分类学和进化生物学中的前沿领域之一.相对于核苷酸或氨基酸序列中的突变而言,基因组的结构变化--内含子的插入/缺失、反转录子的整合、签名序列、基因重复以及基因排序等--是更大空间(或者时间空间)尺度上的相对稀缺的系统发育信息,一般用于科和科以上阶元间的亲缘关系研究.基因组全序列的获得和其中各基因位置的确定有利于将基因组中不同层次的系统发育信息综合起来,利用全面分子证据(total molecular evidence;包括基因组信息,DNA、RNA、蛋白质的序列信息,RNA和蛋白质的高级结构等)进行分子系统学研究.  相似文献   

12.
Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.  相似文献   

13.
Human bocaviruses (HBoV) are highly prevalent human infections whose pathogenic potential remains unknown. Recent identification of the first non-human primate bocavirus [1] in captive gorillas raised the possibility of the persistent nature of bocavirus infection. To characterize bocavirus infection in humans, we tested intestinal biopsies from 22 children with gastrointestinal disease for the presence of HBoV DNA. Four HBoV-positive tissue samples were analyzed to determine whether viral DNA was present in the linear genomic, the episomal closed circular or the host genome-integrated form. Whereas one tissue sample positive for HBoV3 contained the episomal form (HBoV3-E1), none had the genome-integrated form. The complete genome sequence of HBoV3-E1 contains 5319 nucleotides of which 513 represent the non-coding terminal sequence. The secondary structure of HBoV3-E1 termini suggests several conserved and variable features among human and animal bocaviruses. Our observation that HBoV genome exists as head-to-tail monomer in infected tissue either reflects the likely evolution of alternative replication mechanism in primate bocaviruses or a mechanism of viral persistence in their host. Moreover, we identified the HBoV genomic terminal sequences that will be helpful in developing reverse genetic systems for these widely prevalent parvoviruses. Significance: HBoV have been found in healthy human controls as well as individuals with respiratory or gastrointestinal disease. Our findings suggest that HBoV DNA can exist as episomes in infected human tissues and therefore can likely establish persistent infection in the host. Previous efforts to grow HBoV in cell culture and to develop reverse genetic systems have been unsuccessful. Complete genomic sequence of the HBoV3 episome and its genomic termini will improve our understanding of HBoV replication mechanism and its pathogenesis.  相似文献   

14.
15.
Plastid sequencing is an essential tool in the study of plant evolution. This high‐copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low‐cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation‐sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short‐range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.  相似文献   

16.
17.
Bacteriophage T4 genome.   总被引:2,自引:0,他引:2  
  相似文献   

18.
Darwin recognised the processes of speciation and the frequent extinction of species. We now understand many of the genome-scale processes occurring during evolution involving mutations, amplification, loss or homogenisation of DNA sequences; rearrangement, fusion and fission of chromosomes; and horizontal transfer of genes or genomes, including processes involving hybridisation and polyploidy. DNA sequence information, combined with appropriate informatic tools and experimental approaches such as generation of synthetic hybrids, comparison of genotypes across environments, and modelling of genomic responses, is now letting us link genome behaviour with its consequences. The understanding of genome evolution will be of critical value both for conservation of the biodiversity of the plant kingdom and addressing the challenges of breeding new and more sustainable crops to feed the human population.  相似文献   

19.
20.
Complete genome sequences are accumulating rapidly, culminating with the announcement of the human genome sequence in February 2001. In addition to cataloguing the diversity of genes and other sequences, genome sequences will provide the first detailed and complete data on gene families and genome organization, including data on evolutionary changes. Reciprocally, evolutionary biology will make important contributions to the efforts to understand functions of genes and other sequences in genomes. Large-scale, detailed and unbiased comparisons between species will illuminate the evolution of genes and genomes, and population genetics methods will enable detection of functionally important genes or sequences, including sequences that have been involved in adaptive changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号