首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BRO human melanoma cells encapsulated within a fibrin clot grew rapidly in mice immunosuppressed (IS) by wholebody irradiation (5.5 or 6.5 Gy). After 8 days growth under the sub-renal capsule (SRC) of IS mice, the tumor volume increased 40-fold on the average, and histological and cytological examination showed that the growth consisted almost entirely of viable tumor cells.Marked tumor growth in IS mice also was observed after intraperitoneal implantation of fibrin clots containing BRO cells. SRC implantation of encapsulated BRO cells in pre-irradiated mice offers a practical and reproducible method for evaluating the growth of human tumors in vivo.  相似文献   

2.
Summary Pulmonary tumors were produced in A strain mice by intravenous injection of 1×106 A strain mammary carcinoma cells. The mice were killed on day 14, their lungs fixed in Bouin's fluid, and the number of tumors counted.The mesenteric lymph node chains of pigs were immunized by implantation of tissue into the mesentery. In all animals the middle segment of node chain was excised. The remaining segments of node proximal and distal to the resected segment were, in separate pigs, nonimmunized or immunized against mouse tumor, immunized against mouse tumor or mouse skin, or immunized against human tumor or mouse tumor. All segments of node chain were removed 7 days after immunization for preparation of cell suspensions.When tumor cells were combined in a ratio of 1 : 10 or 1 : 60 with mouse tumor-immune pig cells, there was a significant reduction in tumor formation compared to that in mice receiving tumor cells alone.Injection of mouse tumor-immune pig cells on day 7, to treat tumors inoculated on day 0, was ineffective. However, when the mice received, in addition, 200 rad thoracic irradiation on day 3, immune pig cells reduced the number of tumors compared to that in animals receiving irradiation alone, or irradiation and nonimmune pig cells.In further experiments, in order to increase the number of pig cells reaching the lungs, a splenectomy was performed on day 6, prior to intravenous injection of immune cells on day 7. A comparison was made of the antitumor effect of pig cells immunized against mouse tumor, mouse skin, or human tumor. Cells immunized against either mouse tissue were equally effective in reducing the number of tumors compared to the number in animals receiving tumor cells alone. However, cells immune to human tumor were ineffective.  相似文献   

3.
Infection with the helper virus-dependent human parvovirus adeno-associated virus (AAV) is known to interfere with cellular transformation in vitro and oncogenesis in vivo. Here we report on sensitization to gamma irradiation by AAV infection of cells in culture and of tumors established from HeLa cells grafted into immunodeficient (nude) mice: infection of HeLa cells with AAV type 2 enhanced cell killing and reduced plating efficiency after irradiation compared with uninfected cells. Similarly, HeLa cell tumors in nude mice displayed a reduced growth rate and were more sensitive to gamma irradiation when the animals were infected with AAV type 2 prior to or after tumor cell inoculation. Since no pathogenicity is known for AAV, the ability of this virus to render radiotherapy of human tumor cells more efficient may up open novel approaches in cancer treatment.  相似文献   

4.
Radiotherapy (RT) plays a key role in cancer treatment. Although the benefit of ionizing radiation (IR) is well established, some findings raise the possibility that irradiation of the primary tumor not only triggers a killing response but also increases the metastatic potential of surviving tumor cells. Here we addressed the question of whether irradiation of normal cells outside of the primary tumor augments metastasis by stimulating the extravasation of circulating tumor cells. We show that IR exposure of human endothelial cells (EC), tumor cells (TC) or both increases TC-EC adhesion in vitro. IR-stimulated TC-EC adhesion was blocked by the HMG-CoA reductase inhibitor lovastatin. Glycyrrhizic acid from liquorice root, which acts as a Sialyl-Lewis X mimetic drug, and the Rac1 inhibitor NSC23766 also reduced TC-EC adhesion. To examine the in vivo relevance of these findings, tumorigenic cells were injected into the tail vein of immunodeficient mice followed by total body irradiation (TBI). The data obtained show that TBI dramatically enhances tumor cell extravasation and lung metastasis. This pro-metastatic radiation effect was blocked by pre-treating mice with lovastatin, glycyrrhizic acid or NSC23766. TBI of mice prior to tumor cell transplantation also stimulated metastasis, which was again blocked by lovastatin. The data point to a pro-metastatic trans-effect of RT, which likely rests on the endothelial radiation response promoting the extravasation of circulating tumor cells. Administration of the widely used lipid-lowering drug lovastatin prior to irradiation counteracts this process, likely by suppressing Rac1-regulated E-selectin expression following irradiation. The data support the concern that radiation exposure might increase the extravasation of circulating tumor cells and recommend co-administration of lipid-lowering drugs to avoid this adverse effect of ionizing radiation.  相似文献   

5.
The ability of a human B-cell lymphoma cell line to grow subcutaneously as tumors in nude mice was investigated. The effect of pretreating mice with cyclophosphamide or whole-body irradiation (WBI) was compared with no pretreatment of the mice. Both methods of pretreatment resulted in a higher tumor implantation rate, compared with that for non-pretreated controls. In mice that underwent WBI-pretreatment, a tumor implantation rate of 100% was observed, whereas mice pretreated with cyclophosphamide had a tumor implantation rate of 80%. In non-pretreated control mice, an implantation rate of only 50% was observed. Three weeks after injection, tumor size was significantly larger in mice of the pretreated groups, compared with that in mice of the group that did not receive pretreatment. Furthermore, particularly in the group pretreated with WBI, the tumors grew more synchronously, compared with tumors in the control group. Results of this study indicate that pretreatment with cyclophosphamide or WBI improves the tumor implantation rate of Ramos cells in nude mice, providing a workable animal model for studying human B-cell lymphoma.  相似文献   

6.
The relationship of clonogenic cells, cellular radiation sensitivity at tumor control does in vivo, and tumor rescuing units at different tumor sizes was investigated in the human squamous cell carcinoma FaDu growing in NCr/Sed nude mice. The composition of the tumors was determined in single cell suspensions and compared to tumor control data after single-dose irradiation. To avoid the influence of varying oxygen concentrations in the tumors, all irradiations were performed under clamp hypoxia. Nude mice and animals further immunosuppressed by 6-Gy whole-body irradiation were used to assess the immunological effects. The numbers of total cells, cells excluding trypan blue, host cells, and colony-forming cells increased linearly with the weight of FaDu tumors. Comparable results were obtained for cell suspensions prepared from tumors growing in nude of pretreated nude mice. The radiation dose required to control 50% of tumors (TCD50) of different sizes between 36 and 470 mm3 increased from 52.1 to 60.1 Gy when the tumors were maintained in normal nude mice and from 50.8 to 61.3 Gy in whole-body-irradiated mice. The D0 of FaDu cells in vivo was calculated by regression analysis of TCD50 vs the logarithm of the clonogenic cell number, assuming an oxygen enhancement ratio of 3.0. The resultant D0S of 1.1 and 1.2 Gy in vivo correspond well to the radiosensitivity of FaDu cells in vitro determined previously. Assuming the single-hit multitarget model of cell killing and extrapolation numbers between 2 and 20, the mean number of tumor rescuing units would be 10(5) to 10(6) for a 100-mm3 tumor growing in whole-body-irradiated nude mice. Comparison of the number of tumor rescuing units to the estimated number of clonogenic cells does not conflict with the assumption that every surviving clonogenic cell is able to repopulate FaDu tumors after irradiation; however, it seems more likely that more than one clonogenic cells is necessary. The proportion of tumor rescuing units in the clonogenic cell population is independent of tumor size.  相似文献   

7.
Adoptive T cell therapy has proven to be beneficial in a number of tumor systems by targeting the relevant tumor antigen. The tumor antigen targeted in our model is Mammaglobin-A, expressed by approximately 80% of human breast tumors. Here we evaluated the use of adoptively transferred Mammaglobin-A specific CD8 T cells in combination with low dose irradiation to induce breast tumor rejection and prevent relapse. We show Mammaglobin-A specific CD8 T cells generated by DNA vaccination with all epitopes (Mammaglobin-A2.1, A2.2, A2.4 and A2.6) and full-length DNA in vivo resulted in heterogeneous T cell populations consisting of both effector and central memory CD8 T cell subsets. Adoptive transfer of spleen cells from all Mammaglobin-A2 immunized mice into tumor-bearing SCID/beige mice induced tumor regression but this anti-tumor response was not sustained long-term. Additionally, we demonstrate that only the adoptive transfer of Mammaglobin-A2 specific CD8 T cells in combination with a single low dose of irradiation prevents tumors from recurring. More importantly we show that this single dose of irradiation results in the down regulation of the macrophage scavenger receptor 1 on dendritic cells within the tumor and reduces lipid uptake by tumor resident dendritic cells potentially enabling the dendritic cells to present tumor antigen more efficiently and aid in tumor clearance. These data reveal the potential for adoptive transfer combined with a single low dose of total body irradiation as a suitable therapy for the treatment of established breast tumors and the prevention of tumor recurrence.  相似文献   

8.
According to recent data erythropoietin receptor (EPOR) is expressed not only by bone marrow erythroid progenitors but by endothelial- and cancer cells and it was suggested that erythropoietin (EPO) may affect their functions as well. We have analyzed the effects of recombinant human erythropoietin-alpha (rHuEPOalpha) on radiation sensitivity of EPOR+ human epidermoid carcinoma (A431) xenograft model. In vivo rHuEPOalpha treatment was started after tumor cell inoculation into SCID mice. 5 Gy irradiation was performed on day 14, the effect of which was measured on day 22. Hemoglobin level, tumor-associated microvessels and HIF-1alpha expression of the xenograft were monitored during the experiment. rHuEPOalpha administration prevented the development of tumor-induced anemia of SCID mice and reduced the level of HIF-1alpha expression of the xenograft tumor without affecting tumor growth. We have found that rHuEPOalpha treatment significantly increased the efficacy of antitumor effect of irradiation which was partly mediated by complex effects on tumor-associated microvessels. In vitro rHuEPOalpha did not affect proliferation of A431 cells but enhanced the antiproliferative and proapoptotic effects of irradiation. We concluded that rHuEPOalpha administration positively modulated the antitumoral effects of irradiation at least by two pathways, decreasing systemic hypoxia resulting in decreased tumoral HIF-1alpha expression and enhancing direct effects on tumor-associated microvessels.  相似文献   

9.
Mouse B16 melanoma allografts in nude mice were successfully treated by thermal neutron irradiation after IP injection of 10B-paraboronophenylalanine hydrochloride. The tumor growth was significantly suppressed for 4 weeks after irradiation, compared with animals given neutron irradiation alone. Tumor-bearing nude mice were shown to be useful for evaluating the treatment for melanoma.  相似文献   

10.
BackgroundEukaryotic initiation factor eIF4E, an important regulator of translation, plays a crucial role in the malignant transformation, progression and radioresistance of many human solid tumors. The overexpression of this gene has been associated with tumor formation in a wide range of human malignancies, including breast cancer. In the present study, we attempted to explore the use of eIF4E as a therapeutic target to enhance radiosensitivity for breast carcinomas in a xenograft BALB/C mice model.Materials and methodsNinety female BALB/C mice transfected with EMT-6 cells were randomly divided into six groups: control, irradiation (IR), pSecX-t4EBP1, pSecX-t4EBP1 + irradiation, pSecX and pSecX + irradiation. At the end of the experiments, all mice were sacrificed, the xenografts were harvested to measure the tumor volume and mass, and the tumor inhibition rates were calculated. Apoptosis was detected with a flow cytometric assay. Immunohistochemistry was used to detect the expression of HIF-1α.ResultsThe xenografts in pSecX-t4EBP1 mice showed a significantly delayed growth and smaller tumor volume, with a higher tumor inhibition rate compared with the control and pSecX groups. A similar result was obtained in the pSecX-t4EBP1 + IR group compared with IR alone and pSecX + irradiation. The expression of HIF-1α in the tumor cells was significantly decreased, while the apoptosis index was much higher.ConclusionspSecX-t4EBP1 can significantly inhibit tumor growth and enhance the radiosensitivity of breast carcinoma xenografts in BALB/C mice. This is possibly associated with the downregulation of HIF-1α expression, which suggests that pSecX-t4EBP1 may serve as an ideal molecular target for the radiosensitization of breast carcinoma.  相似文献   

11.
Summary Pulmonary tumors were produced in A. strain mice by intravenous injection of A. strain mammary carcinoma cells. The mesenteric lymph nodes of pigs were immunized by implantation of fragments from the same tumors into the pig mesentery.Tumor-immune pig lymph node cells when injected IV 7 days after tumor cells did not reduce the number of tumors, counted on day 14. However, when preceded by 200 rad thoracic irradiation on day 3 (which increased the number of pig cells settling in the lungs) tumor-immune cells given IV reduced the number of tumors compared with the effect of irradiation alone, or in combination with nonimmune pig cells.When tumor-immune pig cells were injected IP on day 7 (following thoracic irradiation on day 3), no antitumor effect was observed. Thus immediate pig cell/tumor cell contact is important in order to obtain an antitumor effect.Pig cells immunized against a human bladder carcinoma did not reduce pulmonary tumor formation by one of the mouse tumors.  相似文献   

12.
The effect of exposing WHT mice bearing the Fib/T tumor to a low-oxygen environment (8, 10, and 15% oxygen) for 48 h or 72 h before irradiation was compared, using an in vitro colony-forming excision assay, to the effect obtained when mice were pretreated with air. The response of the Fib/T tumor to radiation delivered in air was improved both by a 48-h and by a 72-h exposure of the animals to 8, 10, and 15% oxygen. However, the greatest tumor sensitization was achieved when mice were kept in 8% oxygen for 48 h before irradiation. These results are interpreted and discussed in relation to increases in the 2,3-DPG concentration, which were shown to occur when mice were exposed to a reduced oxygen environment. The relative importance of two models proposed to explain these findings is assessed. If mice pretreated with air were irradiated in hyperbaric oxygen, a similar tumor response was observed compared to that when mice were exposed to 8% oxygen for 48 h and then irradiated in air.  相似文献   

13.
A method is reported for the study of early phases of neovascularization in syngeneic murine tumors and human tumor xenografts in nude mice. Using this method, the effect of irradiation of tumor cells or tumor bed on tumor angiogenesis was studied. Tumor cells were injected intradermally in the abdominal skin flap, which was reopened at 2-day intervals to quantify newly formed blood vessels at the site of tumor cell injection. Both tumor cell injection and blood vessel counting were performed under a dissecting microscope. Using three syngeneic murine tumors and two clones of a human colonic adenocarcinoma, it was observed that new blood vessels started appearing within a few days after tumor cell injection and that this event preceded measurable tumor growth. The number of blood vessels increased exponentially for several days but then their further growth slowed. The extent of angiogenesis depended on the tumor type and the number of tumor cells injected. The exposure of the skin flap to ionizing radiation prior to tumor cell injection reduced neovascularization. We further observed that heavily irradiated tumor cells retained their ability to induce angiogenic response and that lymphoid cells (peritoneal exudate and spleen cells) could also elicit an angiogenic response, although it is weaker than the response elicited by tumor cells. Thus this method is suitable for quantification and kinetics of early phases of tumor angiogenesis in individual mice bearing transplants of syngeneic tumors or human tumor xenografts, and it can be useful for investigating various regulators of tumor angiogenesis.  相似文献   

14.
The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs gamma rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.  相似文献   

15.
The effect of single and five-fold administration of 12 chemotherapeutic drugs on human strains of larynx, lung and kidney cancers and Wilms' tumor transplanted in nude mice was studied. Wilms' tumor was found to be more responsive to dactinomycin and cyclophosphamide. Larynx, lung and kidney cancers were resistant to all the chemotherapeutic drugs studied. The effect of irradiation of larynx cancer which resulted in short-term tumor growth retardation was also studied.  相似文献   

16.
The effect of irradiation depends on the oxygenation status of the tissue, while irradiation itself also changes the oxygenation and perfusion status of tissues. A better understanding of the changes in tumor oxygenation and perfusion over time after irradiation will allow a better planning of fractionated radiotherapy in combination with modifiers of blood flow and oxygenation. Vascular architecture (endothelial marker), perfusion (Hoechst 33342) and oxygenation (pimonidazole) were studied in a human laryngeal squamous cell carcinoma tumor line grown as xenografts in nude mice. The effect of a single dose of 10 Gy X rays on these parameters was evaluated from 2 h to 11 days after irradiation. Shortly after irradiation, there was an 8% increase in perfused blood vessels (from 57% to 65%) followed by a significant decrease, with a minimum value of 42% at 26 h after irradiation, and a subsequent increase to control levels at 7 to 11 days after irradiation. The hypoxic fraction showed a decrease at 7 h after treatment from 13% to 5% with an increase to 19% at 11 days after irradiation. These experiments show that irradiation causes rapid changes in oxygenation and perfusion which may have consequences for the optimal timing of radiotherapy schedules employing multiple fractions per day and the introduction of oxygenation- and perfusion-modifying drugs.  相似文献   

17.
We investigated the immunological responses induced by human interferon β (IFNβ) gene transfer in human gliomas produced in the brains of nude mice. A suspension of human glioma U251-SP cells was injected into the brains of nude mice. The IFNβ gene was transferred by intratumoral injection with cationic liposomes or cationic liposomes associated with anti-glioma monoclonal antibody (immunoliposomes). When intratumoral injection of liposomes or immunoliposomes containing the human IFNβ gene was performed every second day for a total of six injections, starting 7 days after tumor transplantation, complete disappearance of the tumor was observed in six of seven mice that had received liposomes and in all seven mice receiving immunoliposomes. In addition, experimental gliomas injected with immunoliposomes were much smaller than those injected with ordinary liposomes following delayed injections beginning 14 days after transplantation. An immunohistochemical study of the treated nude mouse brains revealed a remarkable induction of natural killer (NK) cells expressing asialoGM1 antigen. To investigate the significance of NK cells in the antitumor effect, we injected liposomes or immunoliposomes containing the human IFNβ gene into tumors in nude mice depleted of NK cells by irradiation and anti-asialoGM1 antibody administration. The antitumor effect of the liposomes or immunoliposomes was abolished. Subsequent subcutaneous glioma challenge of the nude mice after intracerebral tumor implantation and gene transfer resulted in no subcutaneous tumor growth. These results suggest that the induction of NK cells is important in the cytocidal effect of liposomes or immunoliposomes containing the human IFNβ gene upon experimental gliomas. Received: 10 February 1998 / Accepted: 1 September 1998  相似文献   

18.
The effect of radiation therapy combined with lymphoid cells against spontaneous murine fibrosarcoma (FSa-II) was investigated bothin vivo andin vitro. In thein vivo experiment, syngeneic C3H mice were divided into 3 groups. Animals in the first group were injected with 1 x 105 tumor cells into the right hind leg. Animals in the second and third groups were injected with 1 x 105 tumor cells mixed with 1 x 107 normal lymphoid cells (NLC) or effector lymphoid cells (ELC), respectively. ELC were obtained from spleen and lymph nodes of FSa-II-bearing mice and incubatedin vitro for 40 hr to eliminate suppressor T cell function. NLC were obtained from normal mice and incubated in the same way. Irradiation was given using137Cs unit 3 days after cell inoculation. 12 out of 14 mice (85.7%) inoculated with tumor cells mixed with NLC did not show any tumor growth at 60 Gy local irradiation. 12 out of 21 mice (57.1 %) inoculated with tumor cells alone and 6 out of 10 (60%) with tumor cells mixed with ELC rejected tumors at the same radiation dose. This synergistic effect with NLC was not observed when NLC was inoculated after irradiation, indicating that lymphoid cells should be in contact with tumor cells before irradiation. In the51Cr release assay, lymphoid cells obtained from whole body irradiated (WBI) mice showed 17.8% lysis without irradiation and 28.8% lysis at 5 Gy irradiation. Untreated NLC showed almost no cytotoxic effect at the same radiation dose. This synergistic effect disappeared when WBI lymphoid cells were treated with anti asialo GM1 and complement. These results suggested that NK cells might be important in this synergistic effect with irradiation. To obtain a sufficient level of synergistic effect by in vitro combined treatment of mixed tumor cell - NLC culture and irradiation - incubation for more than 12 hrs and 8 hrs appeared to be necessary before and after irradiation, respectively.  相似文献   

19.
Summary Delayed-type hypersensitivity (DTH) reactions in mouse feet were depressed by irradiation and by treatment with carrageenan, niridazole, or reserpine. Specific resistance of immunized mice to footpad challenge with a syngeneic methylcholanthrene-induced fibrosarcoma was also depressed by irradiation, carrageenan, niridazole, and reserpine. Growth of the tumor in the feet of normal mice was unaffected by irradiation or niridazole. It could be inhibited or enhanced by carrageenan treatment, depending on the dose of tumor cells injected. Paradoxically, treatment with reserpine inhibited tumor growth in the feet of nonimmune mice. It is suggested that: (a) specific, acquired resistance to this tumor is strongly akin to DTH; (b) mice offer some natural resistance to this tumor; (c) the establishment of an isograft of this tumor may depend on the occurrence of some degree of inflammation.This work was carried out pursuant to Research Contract NO1-CB-63973 with the U.S. National Cancer Institute. It was supported in part by a grant from the Australian National Health and Medical Research Council  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号