首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Barrier-to-autointegration factor (BAF) is a DNA-bridging protein, highly conserved in metazoans. BAF binds directly to LEM (LAP2, emerin, MAN1) domain nuclear membrane proteins, including LAP2 and emerin. We used site-directed mutagenesis and biochemical analysis to map functionally important residues in human BAF, including those required for direct binding to DNA or emerin. We also tested wild-type BAF and 25 point mutants for their effects on nuclear assembly in Xenopus egg extracts, which contain approximately 12 microM endogenous BAF dimers. Exogenous BAF caused two distinct effects: at low added concentrations, wild-type BAF enhanced chromatin decondensation and nuclear growth; at higher added concentrations, wild-type BAF completely blocked chromatin decondensation and nuclear growth. Mutants fell into four classes, including one that defines a novel functional surface on the BAF dimer. Our results suggest that BAF, unregulated, potently compresses chromatin structure, and that BAF interactions with both DNA and LEM proteins are critical for membrane recruitment and chromatin decondensation during nuclear assembly.  相似文献   

6.
Like Duchenne and Becker muscular dystrophies, Emery-Dreifuss muscular dystrophy (EDMD) is characterized by myopathic and cardiomyopathic abnormalities. EDMD has the particularity of being linked to mutations in nuclear proteins. The X-linked form of EDMD is caused by mutations in the emerin gene, whereas autosomal dominant EDMD is caused by mutations in the lamin A/C gene. Emerin colocalizes with lamin A/C in interphase cells, and binds in vitro to lamin A/C. Recent work suggests that lamin A/C might serve as a receptor for emerin. We have undertaken a structural analysis of emerin, and in particular of its N-terminal domain, which is comprised in the emerin segment critical for binding to lamin A/C. We show that region 2-54 of emerin adopts the LEM fold. This fold was originally described in the two N-terminal domains of another inner nuclear membrane protein called lamina-associated protein 2 (LAP2). The existence of a conserved solvent-exposed surface on the LEM domains of LAP2 and emerin is discussed, as well as the nature of a possible common target.  相似文献   

7.
BACKGROUND: Integral membrane proteins of the inner nuclear membrane are involved in chromatin organization and postmitotic reassembly of the nucleus. The discovery that mutations in the gene encoding emerin causes X-linked Emery-Dreifuss muscular dystrophy has enhanced interest in such proteins. A common structural domain of 50 residues, called the LEM domain, has been identified in emerin MAN1, and lamina-associated polypeptide (LAP) 2. In particular, all LAP2 isoforms share an N-terminal segment composed of such a LEM domain that is connected to a highly divergent LEM-like domain by a linker that is probably unstructured. RESULTS: We have determined the three-dimensional structures of the LEM and LEM-like domains of LAP2 using nuclear magnetic resonance and molecular modeling. Both domains adopt the same fold, mainly composed of two large parallel alpha helices. CONCLUSIONS: The structural LEM motif is found in human inner nuclear membrane proteins and in protein-protein interaction domains from bacterial multienzyme complexes. This suggests that LEM and LEM-like domains are protein-protein interaction domains. A region conserved in all LEM domains, at the surface of helix 2, could mediate interaction between LEM domains and a common protein partner.  相似文献   

8.
The lamina-associated polypeptide (LAP) 2 family comprises up to six alternatively spliced proteins in mammalian cells and three isoforms in Xenopus. LAP2beta is a type II integral protein of the inner nuclear membrane, which binds to lamin B and the chromosomal protein BAF, and may link the nuclear membrane to the underlying lamina and provide docking sites for chromatin. LAP2alpha shares only the N-terminus with the other isoforms and contains a unique C-terminus. It is a nonmembrane protein associated with the nucleoskeleton and may help to organize higher order chromatin structure by interacting with A-lamins and chromosomes. Recent studies using mutant proteins have just begun to unravel functions of LAP2 isoforms during postmitotic nuclear reassembly. LAP2alpha associates with chromosomes via an alpha-specific domain at early stages of assembly, possibly providing a structural framework for chromosome reorganization. The subsequent interaction of both LAP2alpha and LAP2beta with the chromosomal BAF may stabilize chromatin structure and target membranes to the chromosomes. At later stages LAP2 may regulate the assembly of lamins. LAP2 isoforms have been found to share a homologous approximately 40 amino acid long region, the LEM domain, with nuclear membrane proteins MAN1 and emerin, which has been implicated in Emery-Dreifuss muscular dystrophy.  相似文献   

9.
10.
The present review summarizes recent cytochemical findings on the functional organization of the nuclear domains, with a particular emphasis on the relation between nuclear envelope-associated proteins and chromatin. Mutations in two nuclear envelope-associated proteins, emerin and lamin A/C cause the Emery-Dreifuss muscular dystrophy; the cellular pathology associated with the disease and the functional role of emerin and lamin A/C in muscle cells are not well established. On the other hand, a large body of evidence indicates that nuclear envelope-associated proteins are involved in tissue-specific gene regulation. Moreover, chromatin remodeling complexes trigger gene expression by utilizing the nuclear matrix-associated actin, which is known to interact with both emerin and lamin A/C. It is thus conceivable that altered expression of these nuclear envelope-associated proteins can account for an impairment of gene expression mainly during cell differentiation as suggested by recent experimental findings on the involvement of emerin in myogenesis. The possibility that Emery-Deifuss muscular dystrophy pathogenesis could involve alteration of the signaling pathway is considered.  相似文献   

11.
12.
Emerin is an inner nuclear membrane protein that is involved in X-linked recessive Emery-Dreifuss muscular dystrophy (X-EDMD). Although the function of this protein is still unknown, we revealed that C-terminus transmembrane domain-truncated emerin (amino acid 1-225) binds to lamin A with higher affinity than lamin C. Screening for the emerin binding protein and immunoprecipitation analysis showed that lamin A binds to emerin specifically. We also used the yeast two-hybrid system to clarify that this interaction requires the top half of the tail domain (amino acid 384-566) of lamin A. Lamin A and lamin C are alternative splicing products of the lamin A/C gene that is responsible for autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD). These results indicate that the emerin-lamin interaction requires the tail domains of lamin A and lamin C. The data also suggest that the lamin A-specific region (amino acids 567-664) plays some indirect role in the difference in emerin-binding capacity between lamin A and lamin C. This is the first report that refers the difference between lamin A and lamin C in the interaction with emerin. These data also suggest that lamin A is important for nuclear membrane integrity.  相似文献   

13.
LAP2 belongs to a family of nuclear membrane proteins sharing a 43 residue LEM domain. All LAP2 isoforms have the same N-terminal 'constant' region (LAP2-c), which includes the LEM domain, plus a C-terminal 'variable' region. LAP2-c polypeptide inhibits nuclear assembly in Xenopus extracts, and binds in vitro to barrier-to-autointegration factor (BAF), a DNA-bridging protein. We tested 17 Xenopus LAP2-c mutants for nuclear assembly inhibition, and binding to BAF and BAF small middle dotDNA complexes. LEM domain mutations disrupted all activities tested. Some mutations outside the LEM domain had no effect on binding to BAF, but disrupted activity in Xenopus extracts, suggesting that LAP2-c has an additional unknown function required to inhibit nuclear assembly. Mutagenesis results suggest that BAF changes conformation when complexed with DNA. The binding affinity of LAP2 was higher for BAF small middle dotDNA complexes than for BAF, suggesting that these interactions are physiologically relevant. Nucleoplasmic domains of XENOPUS: LAP2 isoforms varied 9-fold in their affinities for BAF, but all isoforms supershifted BAF small middle dotDNA complexes. We propose that the LEM domain is a core BAF-binding domain that can be modulated by the variable regions of LAP2 isoforms.  相似文献   

14.
Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1alpha and -2beta which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1alpha and residues 126 to 219 of nesprin-2beta, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously been implicated in binding to F-actin, beta-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1alpha and -2beta isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.  相似文献   

15.
16.
17.
Emerin is the gene product of STA whose mutations cause Emery-Dreifuss muscular dystrophy. It is an inner nuclear membrane protein and phosphorylated in a cell cycle-dependent manner. However, the means of phosphorylation of emerin are poorly understood. We investigated the regulation mechanism for the binding of emerin to chromatin, focusing on its cell cycle-dependent phosphorylation in a Xenopus egg cell-free system. It was shown that emerin dissociates from chromatin depending on mitotic phosphorylation of the former, and this plays a critical role in the dissociation of emerin from barrier-to-autointegration factor (BAF). Then, we analyzed the mitotic phosphorylation sites of emerin. Emerin was strongly phosphorylated in an M-phase Xenopus egg cell-free system, and five phosphorylated sites, Ser49, Ser66, Thr67, Ser120, and Ser175, were identified on analysis of chymotryptic and tryptic emerin peptides using a phosphopeptide-concentrating system coupled with a Titansphere column, which specifically binds phosphopeptides, and tandem mass spectrometry sequencing. An in vitro binding assay involving an emerin S175A point mutant protein suggested that phosphorylation at Ser175 regulates the dissociation of emerin from BAF.  相似文献   

18.
19.
20.
X-linked Emery-Dreifuss muscular dystrophy is usually caused by absence of the nuclear membrane protein, emerin, due to nonsense mutations or deletions, but a few missense mutations also exist. A pathogenic g993t mutation causes a Q133H change in the nuclear targeting region of emerin, but it may also reduce emerin levels by affecting mRNA splicing. We have introduced the g993t mutation by in vitro mutagenesis and studied the effect of Q133H on nuclear targeting by transfection of COS-7 cells. No qualitative or quantitative differences in nuclear targeting were observed between normal and mutant emerin. Quantitative BIAcore analysis showed no significant change in lamin A binding to emerin when the mutation was present. We conclude that Q133 is not essential for nuclear targeting of emerin or its interaction with lamin A. Reduced emerin levels due to altered splicing or defective interaction with an unidentified binding partner remain possible pathogenic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号