共查询到20条相似文献,搜索用时 0 毫秒
1.
T A Reinhardt J L Napoli D C Beitz E T Littledike R L Horst 《Biochemical and biophysical research communications》1981,99(1):302-307
The enzymatic conversion of 5-methylthioribose to methionine and its deaminated derivatives, 2-keto-4-methylmercaptobutyric acid and 2-hydroxy-4-methylmercaptobutyric acid by cell-free extracts of has been demonstrated. 14C-Labeled methionine was isolated from incubation mixtures with 5-methylthio[U-14C]ribose. The carbohydrate part of this compound furnishes at least part, if not all, of the four carbon chain of methionine. 相似文献
2.
3.
The synthesis of 25,26-dihydroxycholecalciferol, a biologically active metabolite of cholecalciferol (vitamin D3) is described. 3β-Hydroxy-27-nor-5-cholesten-25-one was converted in three steps to 5,7-cholestadiene-3β,25 (RS), 26-triol. The latter compound was irradiated with ultraviolet light to give 25 (RS), 26-dihydroxyprecholecalciferol; this compound underwent thermal isomerisation to yield 25 (RS), 26-dihydroxycholecalciferol. The structure of the final product was confirmed by ultra-violet spectroscopy, mass spectroscopy and by periodate degradation to the known 25-oxo-27-nor-cholecalciferol. 25 (RS), 26-Dihydroxycholecalciferol was able to stimulate the intestinal absorption of calcium but had little or no effect on the healing of rickets. 相似文献
4.
Understanding of the inactivation pathways of 25-hydroxyvitamin D2 and 24-hydroxyvitamin D2, the two physiologically significant monohydroxylated metabolites of vitamin D2, is of importance, especially during hypervitaminosis D2. In a recent study, it has been demonstrated that the inactivation of 24-hydroxyvitamin D2 occurs through its conversion into 24,26-dihydroxyvitamin D2 [Koszewski, N.J., Reinhardt, T.A., Napoli, J.L., Beitz, C.D., & Horst, R.L. (1988) Biochemistry 27, 5785]. At present, little information is available regarding the inactivation pathway of 25-hydroxyvitamin D2 except its further metabolism into 24,25-dihydroxyvitamin D2 [Jones, G., Rosenthal, A., Segev, D., Mazur, Y., Frolow, F., Halfon, Y., Rabinovich, D., & Shakked, Z. (1979) Biochemistry 18, 1094]. In our present study, we investigated the metabolic fate of 25-hydroxyvitamin D2 in the isolated perfused rat kidney and demonstrated its conversion not only into 24,25-dihydroxyvitamin D2 but also into two other new metabolites, namely, 24,25,28-trihydroxyvitamin D2 and 24,25,26-trihydroxyvitamin D2. The structure identification of the new metabolites was established by the techniques of ultraviolet absorption spectrophotometry and mass spectrometry and by the characteristic nature of each new metabolite's susceptibility to sodium metaperiodate oxidation. In order to demonstrate the physiological significance of the two new trihydroxy metabolites of vitamin D2, we induced hypervitaminosis D2 in a rat using [3 alpha-3H]vitamin D2 and analyzed its plasma for the various [3 alpha-3H]vitamin D2 metabolites on two different high-pressure liquid chromatography systems.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Isolation and identification of 23,25-dihydroxyvitamin D3, an in vivo metabolite of vitamin D3 总被引:3,自引:0,他引:3
Vitamin D supplemented rats produce a metabolite of 25-hydroxy[3 alpha-3H]vitamin D3 that is easily separated from known metabolites by using high-performance liquid chromatography. The production of this metabolite in vivo as well as 1,25-dihydroxyvitamin D3, 24(R),25-dihydroxyvitamin D3, and 25-hydroxyvitamin D3 26,23-lactone is largely if not totally eliminated by nephrectomy. Kidney homogenates from vitamin D supplemented chickens incubated with 25-hydroxyvitamin D3 produce significant quantities of the new, unknown metabolite. This metabolite was isolated in pure form from such incubation mixtures by using both straight-phase and reversed-phase high-performance liquid chromatography. This metabolite has been positively identified as 23,25-dihydroxyvitamin D3 by ultraviolet absorption spectrophotometry, mass spectrometry, and derivatization. This structure was confirmed by chemical synthesis of both C-23 stereoisomers. Although the natural product exactly comigrates with one of the synthetic isomers, the exact stereochemistry of the natural product remains unknown. It is possible that this new metabolite is an intermediate in the biosynthesis of 25-hydroxyvitamin D3 26,23-lactone. 相似文献
6.
R.L. Horst B.C. Pramanik T.A. Reinhardt S.-J. Shiuey J.J. Partridge M.R. Uskokovic J.L. Napoli 《Biochemical and biophysical research communications》1982,106(3):1006-1011
23,25-Dihydroxyvitamin D3 was isolated from the plasma of vitamin D3-toxic pigs. An ultraviolet absorbance spectrum confirmed its purity. The configuration of the 23-hydroxyl group was determined to be S by comparison of the natural product with synthetic 23,25- and 23,25-dihydroxyvitamin D3 by high-pressure liquid chromatography. The affinity of both 23,25- and 23,25-dihydroxyvitamin D3 for the plasma vitamin D binding protein was similar to vitamin D3. Thus, with respect to the plasma vitamin D binding protein, 23,25-dihydroxyvitamin D3 is the least potent, naturally-occurring, dihydroxylated vitamin D3 metabolite known. 相似文献
7.
J K Wichmann H F DeLuca H K Schnoes R L Horst R M Shepard N A Jorgensen 《Biochemistry》1979,18(22):4775-4780
A major vitamin D metabolite was isolated in pure form from the blood plasma of chicks either maintenance levels or large doses of vitamin D3. The isolation involved methanol-chloroform extraction and five column chromatographic procedures. The metabolite purification and elution position on these columns were followed by a competitive protein binding assay. The metabolite was identified, using high- and low-resolution mass spectrometry, 270-MHz proton nuclear magnetic resonance spectrometry, ultraviolet absorption spectrophotometry, Fourier transform infrared spectrophotometry, and specific chemical reactions, as 3 beta,-25-dihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-lactone. The trivial names 25-hydroxyvitamin D3 26,23-lactone or calcidiol 26,23-lactone are suggested for this compound. 相似文献
8.
Four new in vivo metabolites of vitamin D3 were isolated from the blood plasma of chicks given large doses of vitamin D3. The metabolites were isolated by methanol-chloroform extraction and a series of chromatographic procedures. By use of mass spectrometry, ultraviolet absorption spectrophotometry, and specific chemical reactions, the metabolites were identified as 23,24,25-trihydroxyvitamin D3, 24,25,26-trihydroxyvitamin D3, 24-keto-25-hydroxyvitamin D3 and 23-dehydro-25-hydroxyvitamin D3. 相似文献
9.
10.
N Ohnuma K Bannai H Yamaguchi Y Hashimoto A W Norman 《Archives of biochemistry and biophysics》1980,204(1):387-391
A new vitamin D metabolite was isolated in pure form from the blood of rats given oral doses of 50 μg/kg of 1α-hydroxyvitamin D3. The isolation involved methanol-chloroform extraction and four successive column chromatographic procedures. A tentative structure of the metabolite is proposed on the basis of its column chromatographic behavior via mass spectrometry, ultraviolet absorption spectrophotometry, and as 1α,3β,25-trihydroxy-9,10 (19)-cholestatrieno-26,23-lactone. The trivial name 1α,25-dihydroxyvitamin D3-26,23-lactone is suggested for this compound. 相似文献
11.
A new vitamin D3 metabolite was isolated in pure form (18.2 micrograms) from the serum of rats given large doses (two doses of 26 mumol/rat) of vitamin D3. The new metabolite has been unequivocally identified as 3 beta, 25-dihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-peroxylactone by ultraviolet absorption spectrophotometry, Fourier transform infrared spectrophotometry, mass spectrometry, field desorption mass spectrometry, and specific chemical reaction with triphenyl phosphine. The stereochemical configuration at the C-23 and c-25 positions of the 25-hydroxyvitamin D3-26-23-peroxylactone was definitely determined to be the 23(S)25(R),25-hydroxyvitamin D3-26,23-peroxylactone is suggested for this metabolite. The isolation involved chloroform-methanol extraction and four column chromatographic procedures. The metabolite purification and elution position on these columns were followed by UV measurement at 264 nm. This metabolite was ultimately resolved from the previously known 25-hydroxyvitamin D3-26,23-lactone by high pressure liquid chromatography using a Zorbax Sil column. The 25-hydroxyvitamin D3-26,23-peroxylactone was converted upon storage at room temperature or -20 degrees C into the 25-hydroxyvitamin D3-26,23-lactone. Since under the conditions of this isolation only the 26,23-peroxylactone and no 26,23-lactone of 25-hydroxyvitamin D3 was present in the rat serum, this suggests that the 25-hydroxyvitamin D3-26,23-peroxylactone is the naturally occurring metabolite. 相似文献
12.
A new chromatographic system for vitamin D3 and its metabolites: resoluation of a new vitamin D3 metabolite 总被引:25,自引:0,他引:25
A simple yet powerful new chromatographic procedure for vitamin D(3) and its metabolites is described. Liquid-gel partition chromatography on Sephadex LH-20 using a solvent of various percentages of CHCl(3) in Skellysolve B (petroleum ether, bp 67-69 degrees C) permits excellent resolution of vitamin D(3), 25-hydroxyvitamin D(3), and their more polar metabolites. Of special importance is the resolution of the metabolites of vitamin D(3) more polar than 25-hydroxycholecalciferol. Because of this resolution, a new metabolite of vitamin D(3) has been demonstrated in the plasma of rats and in the intestines of chicks given 100 IU of vitamin D(3)-1,2-(3)H. 相似文献
13.
14.
T A Reinhardt J L Napoli D C Beitz E T Littledike R L Horst 《Archives of biochemistry and biophysics》1982,213(1):163-168
Methods have been developed for the examination of yeast RNA polymerases I, II, and III by electron microscopy. The results enabled us to establish the size and shape of a eucaryotic RNA polymerase for the first time. The enzymes are roughly spherical in shape and compact in appearance. Their measured molecular diameters are 12.7 ± 0.4 and 11.0 ± 1.4 (SD) nm for polymerase I, 12.7 ± 1.1 and 12.2 ± 1.0 (SD) nm for polymerase II, and 13.6 ± 0.6 and 11.5 ± 1.3 (SD) nm for polymerase III. 相似文献
15.
M I Skliar R L Boland A Mourino G Tojo 《The Journal of steroid biochemistry and molecular biology》1992,43(7):677-682
It has been shown that Solanum malacoxylon contains 1 alpha,25-dihydroxyvitamin D3-glycoside. The presence of vitamin D3 and 25-hydroxyvitamin D3 has also been suggested. In the present study vitamin D3 and three of its metabolites, including 1 alpha,25-dihydroxyvitamin D3, were detected in plant leaf extracts preincubated with ruminal fluid (SMRF). Extraction of SMRF with non-polar organic solvents and purification of the lipid extract by TLC followed by HPLC yielded nine ultraviolet-absorbing (264 nm) peaks. Four of them comigrated on a Zorbax-Sil HPLC column with synthetic standards of vitamin D3, 25-hydroxyvitamin D3, 1 alpha,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3, respectively. These compounds were unequivocally identified by means of mass spectrometry. The results confirm that Solanum malacoxylon contains, in addition to 1 alpha,25-dihydroxyvitamin D3, vitamin D3, 25-hydroxyvitamin D3 and possibly other as yet unidentified derivatives. As 1,24,25-trihydroxyvitamin D3 is absent in plant extracts not incubated with ruminal fluid, the data also indicate that rumen microbes may convert 1 alpha,25-dihydroxyvitamin D3 into 1,24,25-trihydroxyvitamin D3. 相似文献
16.
Eberhard Mayer G.Satyanarayana Reddy Jay R. Kruse George Popjak Anthony W. Norman 《Biochemical and biophysical research communications》1982,109(2):370-375
A new metabolite of vitamin D3 has been isolated in pure form from incubations of rat kidney homogenates with 25-hydroxyvitamin D3 [25-OH-D3]. It was identified as 23,25-dihydroxy-24-oxo-vitamin D3 [23,25(OH)2-24-oxo-D3] by means of ultraviolet absorption spectrophotometry and mass spectrometry. Also, 25-OH-D3-26,23-lactone and 24R,25-dihydroxyvitamin D3 were obtained from the same incubation mixtures. The enzyme activity responsible for the conversion of 25-OH-D3 to 23,25(OH)2-24-oxo-D3 was induced by perfusion of the kidneys with 50 nM 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 相似文献
17.
H E Paaren M A Fivizzani H K Schnoes H F De Luca 《Archives of biochemistry and biophysics》1981,209(2):579-583
1α,25-Difluorovitamin D3 has been synthesized by reacting 1,25-dihydroxyvitamin D3-3-acetate with diethylaminosulfurtrifluoride followed by hydrolysis. Retention of configuration of the fluoro group in this reaction was demonstrated by physical studies using 1α-fluoro and 1β-fluorovitamin D3 models. The 1,25-difluorovitamin D3 compound possessed no vitamin D-like activity demonstrating the importance of 1α- and 25-hydroxylations of vitamin D for activity. However, 1,25-difluorovitamin D3 had no anti-25-hydroxylation activity and no antivitamin D activity. Since 25-fluorovitamin D3 has anti-25-hydroxylase activity, it appears the introduction of a fluoro group on the 1 position diminishes interaction of the vitamin D molecule with the 25-hydroxylase system. 相似文献
18.
Y Tanaka H K Schnoes C M Smith H F DeLuca 《Archives of biochemistry and biophysics》1981,210(1):104-109
A polar metabolite of vitamin D3 has been produced in vitro from either 1,25-dihydroxyvitamin D3 incubated with kidney homogenate from vitamin D-supplemented chickens or from 25,26-dihydroxyvitamin D3 incubated with vitamin D-deficient chicken kidney homogenate. This compound was isolated in pure form and identified as 1,25,26-trihydroxyvitamin D3 by ultraviolet absorption spectrophotometry and mass spectrometry. Furthermore, its periodate cleavage product comigrates with synthetic 1α-hydroxy-25-keto-27-norvitamin D3 on high-performance liquid chromatography. The 1,25,26-trihydroxyvitamin D3 is 0.1-0.01 as active as 1,25-dihydroxyvitamin D3 in the stimulation of intestinal calcium transport and bone calcium mobilization. 相似文献
19.
Three new in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3 were isolated from the serum of dogs given large doses (two doses of 1.5 mg/dog) of 1 alpha,25-dihydroxyvitamin D3. The metabolites were isolated and purified by methanol-chloroform extraction and a series of chromatographic procedures. By cochromatography on a high-performance liquid chromatograph, ultraviolet absorption spectrophotometry, mass spectrometry, Fourier-transform infrared spectrophotometry, and specific chemical reactions, the metabolites were identified as 1 alpha,25-dihydroxy-24- oxovitamin D3, 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3. According to these procedures, the total amounts of the isolated metabolites were as follows: 1 alpha,25-dihydroxyvitamin D3, 23.6 micrograms; 1 alpha,25-dihydroxy-24- oxovitamin D3, 1.8 micrograms; 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 9.2 micrograms; 1 alpha,24(R),25-trihydroxyvitamin D3, 15.4 micrograms; 1 alpha,24(S),25-trihydroxyvitamin D3, 1.0 microgram. With recovery corrections, the serum levels of each metabolite were approximately 49 ng/mL for 1 alpha,25-dihydroxyvitamin D3, 3.7 ng/mL for 1 alpha,25-dihydroxy-24- oxovitamin D3, 19 ng/mL for 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 32 ng/mL for 1 alpha,24(R),25-trihydroxyvitamin D3, and 2.1 ng/mL for 1 alpha,24(S),25-trihydroxyvitamin D3. 相似文献