首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
There has been a growing concern over the last few decades about theeffects of environmental stress, including anthropogenic impacts, onmarine mammals. This paper provides an overview of the wide range ofanthropogenic stressors that marine mammals may encounter and the levelof understanding on their potential effects. Sources of stress andphysiological responses of the animals are explored. Many of the lifehistory traits of marine mammals (i.e., long-life spans, late maturity,relatively low reproductive potential, and feeding high in the foodchain), make them susceptible to various anthropogenic stressors. Sincemarine mammals are exposed to a diverse array of multiple stressors,this paper focuses on three case studies (acute and chronic effects fromoil spills; chronic effects from environmental contaminants, andfishery-induced stress) to emphasize potential relevant hazards and toprovide a perspective on the use of marine mammals in assessingecosystem health. Additional research to enhance our understanding ofstress on marine mammals and to provide the science needed to guidemanagement decisions is recommended.  相似文献   

2.
In developmental and reproductive toxicity studies, drinking water is a common means of delivering the test agent. Reduced consumption of toxicant-containing water raises questions about indirect effects of reduced maternal fluid consumption resulting from unpalatability, versus direct effects of the test compound. Issues to consider include: objective assessment of dehydration and thirst, the relative contributions of innate and learned behaviors to drinking behavior and flavor preference, and the objective assessment of physiologic stress. Not only do lab animals under ad lib conditions consume more water than the minimum required to maintain fluid balance, animals faced with water restriction have substantial physiologic capacity for protection of metabolic processes. Measures of blood biochemistry can provide quantifiable, objective indications of fluid balance, but changes in these parameters could result from other causes such as effects of a test toxicant. Consummatory behaviors in response to perceived need are highly influenced by learning. Hence, the drinking behavior, water intake, and flavor acceptance/preference of animals used in toxicology experiments could be subject to learning experiences with the test compound. Physiological symptoms of stress produced by water deprivation may be distinguishable from the symptoms associated with other generalized stressors, such as food deprivation, but doing so may be beyond the scope of most developmental or reproductive toxicity studies. Use of concurrent controls, paired to test groups for water consumption, could help distinguish between the direct effects of a test toxicant as opposed to effects of reduced water consumption alone. Birth Defects Res (Part B), 86:157–175, 2009. ©2009 Wiley-Liss, Inc.  相似文献   

3.
哺乳动物的生理应激反应及其生态适应性   总被引:1,自引:0,他引:1  
应激反应是哺乳动物的基本生理现象之一。目前,与应激有关的研究主要来自生物医学和神经内分泌学。虽然Hans Selye 提出了个体对应激的普遍性适应综合症概念,但目前的研究还主要集中于应激对个体的负效应以及与应激相关的疾病研究。然而,从进化角度似乎很难理解在数亿年的进化过程中,动物应激反应仅简单地
进化为影响个体健康并导致个体患病的一种生理过程。本文从进化的角度,综述了应激反应与动物繁殖对策的关系以及个体对环境应激源的应对类型,并阐述了动物应激反应的适应和进化意义。  相似文献   

4.
The high pre-weaning mortality in farm animal species and poor welfare conditions of reproductive females question modern industrial farming acceptability. A growing body of literature has been produced recently, investigating the impact of maternal stress during gestation on maternal and offspring physiology and behavior in farm animals. Until now, the possible impact of prenatal stress on neonatal health, growth and survival could not be consistently demonstrated, probably because experimental studies use small numbers of animals and thus do not allow accurate estimations. However, the data from literature synthesized in the present review show that in ungulates, maternal stress can sometimes alter important maternal parameters of neonatal survival such as colostrum production (ruminants) and maternal care to the newborn (pigs). Furthermore, maternal stress during gestation can affect maternal immune system and impair her health, which can have an impact on the transfer of pathogens from the mother to her fetus or neonate. Finally, prenatal stress can decrease the ability of the neonate to absorb colostral immunoglobulins, and alter its inflammatory response and lymphocyte functions during the first few weeks of life. Cortisol and reproductive hormones in the case of colostrogenesis are pointed out as possible hormonal mediators. Field data and epidemiological studies are needed to quantify the role of maternal welfare problems in neonatal health and survival.  相似文献   

5.
Elasmobranchs (sharks, rays, and skates) are currently facing substantial anthropogenic threats, which expose them to acute and chronic stressors that may exceed in severity and/or duration those typically imposed by natural events. To date, the number of directed studies on the response of elasmobranch fishes to acute and chronic stress are greatly exceeded by those related to teleosts. Of the limited number of studies conducted to date, most have centered on sharks; batoids are poorly represented. Like teleosts, sharks exhibit primary and secondary responses to stress that are manifested in their blood biochemistry. The former is characterized by immediate and profound increases in circulating catecholamines and corticosteroids, which are thought to mobilize energy reserves and maintain oxygen supply and osmotic balance. Mediated by these primary responses, the secondary effects of stress in elasmobranchs include hyperglycemia, acidemia resulting from metabolic and respiratory acidoses, and profound disturbances to ionic, osmotic, and fluid volume homeostasis. The nature and magnitude of these secondary effects are species-specific and may be tightly linked to metabolic scope and thermal physiology as well as the type and duration of the stressor. In fishes, acute and chronic stressors can incite a tertiary response, which involves physiological changes at the organismal level, thereby impacting growth rates, reproductive outputs or investments, and disease resistance. Virtually no studies to date have been conducted on the tertiary stress response in elasmobranchs. Given the diversity of elasmobranchs, additional studies that characterize the nature, magnitude, and consequences of physiological stress over a broad spectrum of stressors are essential for the development of conservation measures. Additional studies on the primary, secondary, and tertiary stress response in elasmobranchs are warranted, with particular emphasis on expanding the range of species and stressors examined. Future studies should move beyond simply studying the effects of known stressors and focus on the underlying physiological mechanisms. Such studies should include the coupling of stress indicators with quantifiable aspects of the stressor, which will allow researchers to test hypotheses on survivorship and, ultimately, derive models that effectively link physiology to mortality. Studies of this nature are essential for decision-making that will result in the effective management and conservation of these species.  相似文献   

6.
Stressors that are chronic have clear suppressive effects on reproductive behaviors in both males and females. Stressors that are acute have effects on reproductive behavior that are less clear. We measured the effects of an acute bout of handling in laboratory-housed male and female Ocoee salamanders (Desmognathus ocoee), a species with a prolonged mating season. Handling resulted in decreased locomotory activity and elevated plasma corticosterone, a hallmark of the vertebrate stress response. Handling also decreased plasma testosterone in males and elevated plasma estradiol in females. Despite the handling-induced changes in hormone levels, handling had minimal impact on courtship and mating. Other species in which reproduction is insensitive to acute stressors may live in extreme environments with limited reproductive opportunities, whereas Ocoee salamanders live in a relatively temperate environment with multiple reproductive opportunities. Together, these data indicate that an allostatic response to a stressor can alter locomotory activity and elevate corticosterone without suppressing nonessential behaviors like courtship and mating in a species in which reproductive opportunities can occur over a period of multiple months. The lack of reproductive suppression in Ocoee salamanders might be due to the low energetic cost of courtship and mating in this species combined with potentially elevated energetic stores, highlighting the importance of considering energy budgets when making predictions about behavioral effects of acute stressors.  相似文献   

7.
Stress hormone measurements can reinforce and refine hypotheses about the costs of particular contexts or behaviors in wild animals. For social species, this is complicated because potential stressors may come from the physical environment, social environment, or some combination of both, while the stress response itself is generalized. Here, we present a multivariate examination of urinary cortisol dynamics over 6 years in the lives of wild female chimpanzees in the Kanyawara community of Kibale National Park, Uganda. We hypothesized that chimpanzee socioecology provides strong indications of both energetic and social stress to females, but that the salience of these stressors might vary over a female's life history in accordance with their changing reproductive costs and social interactions. Using linear mixed models, we found that urinary cortisol levels increased significantly with age but were also elevated in young immigrants to the community. Across reproductive states, cycling, non-estrous females had relatively low cortisol compared to lactating, estrous, or pregnant females. Aggression from males led to higher cortisol levels among estrous females, frequent targets of aggressive sexual coercion. In contrast, energetic stress was most salient to lactating females, who experienced higher cortisol during months of low fruit consumption. Low dominance rank was associated with increased cortisol, particularly during the energetically demanding period of lactation. The effects of female conflict were felt widely, even among those who were the primary aggressors, providing further evidence that long-term resource competition, while apparently muted, exerts a far-reaching impact on the lives of chimpanzee females.  相似文献   

8.
Animals facing seasonal variation in food availability experience selective pressures that favor behavioral adjustments such as migration, changes in activity, or shifts in diet. Eclectic omnivores such as many primates can process low-quality fallback food when preferred food is unavailable. Such dietary flexibility, however, may be insufficient to eliminate constraints on reproduction even for species that live in relatively permissive environments, such as moist tropical forests. Focusing on a forest-dwelling primate with a flexible diet (Cercopithecus mitis) we investigated whether females experience seasonal energetic stress and how it may relate to reproductive seasonality. We used fecal glucocorticoids (fGCs) as an indicator of energetic stress, controlling for the potentially confounding effects of social interactions and reproductive state. We modeled within-female fGC variation with General Linear Mixed Models, evaluating changes in feeding behavior and food availability as main effects. Regardless of reproductive state, fGCs increased when females shifted their diet towards fallback foods (mature leaves and other non-preferred items) and when they spent more time feeding, while fGCs decreased with feeding time on preferred items (insects, fruits, young leaves) and with the availability of young leaves. Changes in fruit availability had no general effects on fGCs, likely because fruits were sought out regardless of availability. As predicted, females in the energetically demanding stages of late pregnancy and early lactation showed greater increases in fGCs between periods of low versus high availability of fruits and young leaves than females in other reproductive states. Potential social stressors had no measurable effects on fGCs. Preliminary evidence suggests that seasonal energetic stress may affect the timing of infant independence from mothers and contribute to unusually long inter-birth intervals compared to closely related species of similar body size. Our findings highlight how the study of stress responses can provide insights into the proximate control of reproductive strategies.  相似文献   

9.
Developmental stressors are increasingly recognised for their pervasive influence on the ecology and evolution of animals. In particular, many studies have focused on how developmental stress can give rise to variation in adult behaviour, physiology, and performance. However, there remains a poor understanding of whether general patterns exist in the effects and magnitude of phenotypic responses across taxonomic groups. Furthermore, given the extensive phenotypic variation that arises from developmental stressors, it remains important to ascertain how multiple processes may explain these responses. We compiled data from 111 studies to examine and quantify the effect of developmental stress on animal phenotype and performance from juveniles to adulthood, including studies from birds, reptiles, fish, mammals, insects, arachnids, and amphibians. Using meta‐analytic approaches, we show that across all studies there is, on average, a moderate to large negative effect of developmental stress exposure (posterior mean effect: |d| = ?0.51) on animal phenotype or performance. Additionally, we demonstrate that interactive effects of timing of stressor onset and the duration of exposure to stressors best explained variation in developmental stress responses. Animals exposed to stressors earlier in development had more‐positive responses than those with later onset, whereas longer duration of exposure to a stressor caused responses to be stronger in magnitude. However, the high amount of heterogeneity in our results, and the low degree of variance explained by fixed effects in both the meta‐analysis (R2 = 0.034) and top‐ranked meta‐regression model (R2 = 0.02), indicate that phenotypic responses to developmental stressors are likely highly idiosyncratic in nature and difficult to predict. Despite this, our analyses address a critical knowledge gap in understanding what effect developmental stress has on phenotypic variation in animals. Additionally, our results highlight important environmental and proximate factors that may influence phenotypic responses to developmental stressors.  相似文献   

10.
Life-history theory predicts that stress responses should be muted to maximize reproductive fitness. Yet, the relationship between stress and reproduction for semelparous salmon is unusual because successfully spawning individuals have elevated plasma cortisol levels. To tease apart the effects of high baseline cortisol levels and stress-induced elevation of cortisol titers, we determined how varying degrees of cortisol elevation (i.e., acute and chronic) affected behavior, reproductive physiology, and reproductive success of adult female pink salmon (Oncorhynchus gorbuscha) relative to different states of ovulation (i.e., ripe and unripe). Exhaustive exercise and air exposure were applied as acute stressors to manipulate plasma cortisol in salmon either confined to a behavioral arena or free-swimming in a spawning channel. Cortisol (eliciting a cortisol elevation to levels similar to those in post-spawn female salmon) and metyrapone (a corticosteroid synthesis inhibitor) implants were also used to chemically manipulate plasma cortisol. Cortisol implants elevated plasma cortisol, and impaired reproductive success; cortisol-treated fish released fewer eggs and died sooner than fish in other treatment groups. In contrast, acute stressors elevated plasma cortisol and the metyrapone implant suppressed plasma cortisol, but neither treatment significantly altered reproductive success, behavior, or physiology. Our results suggest that acute stressors do not influence behavior or reproductive outcome when experienced upon arrival at spawning grounds. Thus, certain critical aspects of salmonid reproduction can become refractory to various stressful conditions on spawning grounds. However, there is a limit to the ability of these fish to tolerate elevated cortisol levels as revealed by experimental elevation of cortisol.  相似文献   

11.
Stress, a state of threatened homeostasis, may be induced by various physical or psychological factors (stressors), including antigenic stimulation. Stressful experiences may affect both physical/psychological well being and immune functioning of humans and animals; the ongoing immune reaction may affect other physiological functions and psychological comfort. The molecular basis of these effects involves a network of multidirectional signalling and feedback regulations of neuroendocrine- and immunocyte-derived mediators. The consecutive stages of the multistep immune reactions might be either inhibited or enhanced owing to the previous and/or parallel stress experiences, depending on the kind of stressor and the animal species, strain, gender, or age. Therefore, the final results of stress-induced alteration of immune reactions are difficult to predict. The effect of a particular stressor on immune functions varies according to the previous stress experience of the individual (e.g. social confrontation, sterile saline injection) while various stressors may act in the same or in opposite ways on the same immune parameter. In general, the efficacy of immune response depends on the neuroendocrine environment on which it is superimposed. Conversely, neural and endocrine responses depend on the concurrent immune events upon which they are superimposed. It seems that the consequences of stress on the immune functioning are generally adaptive in the short run but can be damaging when stress is chronic.  相似文献   

12.
Chronic exposure to stressors increases HPA axis activity and concomitantly reduces HPG axis activity. This antagonistic relationship between both these axes has been proposed to underlie the inhibition of reproductive function due to stress. Sexual behavior in males may be the most vulnerable aspect of male reproduction to acute and chronic stress and it has been suggested that alterations in sexual behavior during stress are due to the antagonistic relationship between testosterone and corticosteroids. However, only in a few studies has a correlation between the levels of testosterone and corticosterone, and sexual behavior been made. In this study, we evaluated the effects of different stressors, applied both acute and chronically, on masculine sexual behavior and whether or not these effects on sexual behavior are accompanied by changes in plasma levels of corticosterone and testosterone. Additionally, we evaluated the effect of testosterone treatment on the effects of stress on sexual behavior. Sexually experienced male rats were exposed to one of the following stressors: immobilization (IMB), electric foot shocks (EFS) or immersion in cold water (ICW). Sexual behavior and plasma levels of testosterone and corticosterone were assessed on days 1, 5, 10, 15, and 20 of stress. In a second experiment, males were castrated, treated with 3 different doses of testosterone propionate (TP) and exposed to ICW for 20 consecutive days. Sexual behavior was assessed on days 1, 5, 10, 15, and 20 and steroids were evaluated on day 20. Parameters of masculine sexual behavior were modified depending on the characteristics of each stressor. Mount, intromission and ejaculation latencies increased significantly, the number of mounts increased, and ejaculations decreased significantly in males exposed to EFS and to ICW but not in males exposed to IMB. Associated with these effects, testosterone decreased in the EFS and ICW groups on days 1, 15, and 20. However, corticosterone increased only in males exposed to ICW. In castrated males, TP treatment failed to block the effects of stress by ICW on sexual behavior and corticosterone. These results indicate that the effects of stress on sexual behavior depend on the characteristics of each stressor, and these effects, as well as the decrease in testosterone are not necessarily associated with the increase in corticosterone. The fact that testosterone treatment did not prevent the effects of stress on sexual behavior suggests that other mediators could be involved in the alterations of sexual behavior caused by stress.  相似文献   

13.
Aquatic ecosystems can be chronically stressed by multiple environmental factors which originate from a variety of point and non-point sources. In addition, these stressors may vary both spatially and temporally, and, combined with synergestic and cumulative interactions of these stressors, complicate the interpretation and evaluation of stress responses in organisms. To help identify and differentiate between sources of anthropogenic stressors in aquatic systems, a diagnostic approach based on exposure-response profiles in sentinel organisms was developed from the known effects of various anthropogenic activities on biological systems. To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical, pulp and paper, domestic sewage, mining operations, land-development, and agricultural activities. Biomarkers of exposure to environmental stressors varied widely depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, growth, reproductive impairment, and community-level endpoints were similar among several of the major anthropogenic activities because responses at these higher levels are less specific to stressors than are biomarkers. This approach appears useful for helping to identify and diagnose sources of stress in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors impacting key components of biological systems, aquatic ecosystems can be more effectively protected, regulated, and managed to help improve and maintain environmental quality and ecosystem fitness.  相似文献   

14.
Robustness in farm animals was defined by Knap as 'the ability to combine a high production potential with resilience to stressors, allowing for unproblematic expression of a high production potential in a wide variety of environmental conditions'. The importance of robustness-related traits in breeding objectives is progressively increasing towards the production of animals with a high production level in a wide range of climatic conditions and production systems, together with a high level of animal welfare. Current strategies to increase robustness include selection for 'functional traits', such as skeletal and cardiovascular integrity, disease resistance and mortality in various stages. It is also possible to use global evaluation of sensitivity to the environment (e.g. reaction norm analysis or canalization), but these techniques are difficult to implement in practice. The hypothalamic-pituitary-adrenocortical (HPA) axis is the most important stress-responsive neuroendocrine system. Cortisol (or corticosterone) released by the adrenal cortices exerts a large range of effects on metabolism, the immune system, inflammatory processes and brain function, for example. Large individual variations have been described in the HPA axis activity with important physiopathological consequences. In terms of animal production, higher cortisol levels have negative effects on growth rate and feed efficiency and increase the fat/lean ratio of carcasses. On the contrary, cortisol has positive effects on traits related to robustness and adaptation. For instance, newborn survival was shown to be directly related to plasma cortisol levels at birth, resistance to bacteria and parasites are increased in animals selected for a higher HPA axis response to stress, and tolerance to heat stress is better in those animals that are able to mount a strong stress response. Intense selection for lean tissue growth during the last decades has concomitantly reduced cortisol production, which may be responsible for the negative effects of selection on piglet survival. One strategy to improve robustness is to select animals with higher HPA axis activity. Several sources of genetic polymorphism have been described in the HPA axis. Hormone production by the adrenal cortices under stimulation by adrenocorticotropin hormone is a major source of individual differences. Several candidate genes have been identified by genomic studies and are currently under investigation. Bioavailability of hormones as well as receptor and post-receptor mechanisms are also subject to individual variation. Integration of these different sources of genetic variability will allow the development of a model for marker-assisted selection to improve animal robustness without negative side effects on production traits.  相似文献   

15.
Biotic and abiotic stressors impose various fitness costs on individuals across a variety of taxa. In vertebrates, these stressors typically trigger complex neuroendocrine responses that stimulate glucocorticoid (GC) secretion from the adrenal cortex. Short-term elevation of GCs can be adaptive as it shifts energy toward physiological processes that cope with acute stressors; however, chronic increases in GC levels could have detrimental effects on fitness. Parasitism can be considered an important biotic stressor in nature and a possible cause of reproductive failure that could substantially affect an individual’s fitness. Thus, we aimed to test the effects of parasitism and maternal stress, as measured by GCs, during pregnancy and the relationship between these variables and measures of reproductive output using a rodent-flea system. Female Egyptian spiny mice (Acomys cahirinus) were randomly assigned to flea (Parapulex chephrenis) infested or uninfested treatments before and during pregnancy. The offspring of these females were flea-free. Feces were collected at five time points during the experiment to determine maternal fecal glucocorticoid metabolite (FGCM) concentrations. Overall, infested females had lower FGCM levels during gestation but higher FGCM levels post-parturition and larger mass changes than uninfested females. Additionally, models related to pup quality and quantity often included some measure of maternal investment or body condition moderating relationships between infestation and stress. This suggests that flea parasitism or high GC levels alone might not significantly impact host reproduction but rather females can experience different effects depending on their level of investment, which could be limited by body condition and/or the number of pups present in a litter.  相似文献   

16.
Animals housed in artificial habitats are confronted by a wide range of potentially provocative environmental challenges. In this article, we review many of the potential stressors that may adversely affect animals living in captivity. These include abiotic, environmental sources of stress such as artificial lighting, exposure to loud or aversive sound, arousing odors, and uncomfortable temperatures or substrates. In addition, confinement-specific stressors such as restricted movement, reduced retreat space, forced proximity to humans, reduced feeding opportunities, maintenance in abnormal social groups, and other restrictions of behavioral opportunity are considered. Research in support of the claims for these environmental elements as stressors for captive animals reveals no unique suite of behavioral or physiological responses that will clearly indicate the cause of those responses; rather, it is up to us as managers and caretakers of animals in captivity to evaluate enclosures and husbandry practices to ensure the optimal well-being of animals in our care.  相似文献   

17.
Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long‐term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.  相似文献   

18.
Fecal glucocorticoid (fGC) concentrations are reliable, non-invasive indices of physiological stress that provide insight into an animal's energetic and social demands. To better characterize the long-term stressors in adult members of a female-dominant, seasonally breeding species - the ring-tailed lemur (Lemur catta) - we first validated fecal samples against serum samples and then examined the relationship between fGC concentrations and seasonal, social, demographic, genetic, and reproductive variables. Between 1999 and 2006, we collected 1386 fecal samples from 32 adult, semi-free-ranging animals of both sexes. In males and non-pregnant, non-lactating females, fGC concentrations were significantly elevated during the breeding season, specifically during periods surrounding known conceptions. Moreover, group composition (e.g., multi-male versus one-male) significantly predicted the fGC concentrations of males and females in all reproductive states. In particular, the social instability introduced by intra-male competition likely created a stressor for all animals. We found no relationship, however, between fGC and the sex, age, or heterozygosity of animals. In reproducing females, fGC concentrations were significantly greater during lactation than during the pre-breeding period. During pregnancy, fGC concentrations were elevated in mid-ranking dams, relative to dominant or subordinate dams, and significantly greater during the third trimester than during the first or second trimesters. Thus, in the absence of nutritional stressors, social dominance was a relatively poor predictor of fGC in this female-dominant species. Instead, the animals were maximally challenged by their social circumstances and reproductive events—males by competition for mating opportunities and females by late-term gestation and lactation.  相似文献   

19.
雌雄异株植物对环境胁迫响应的性别差异与性别比例 雌雄异株植物在性特征(繁殖器官)和次级性特征(植物的特征)均表现出性二态。形态、生理与生态特征等次级性特征的性别差异,通常在繁殖成本和其他功能性状之间存在着权衡。尽管有证据表明性二态对环境胁迫的响应不一定存在于所有植物中,但次级性特征的权衡可能受到环境胁迫的影响。当植物表现出性二态时,不同的物种与胁迫因子可以导致性别特异性的响应。因此,胁迫作用对雌雄异株植物影响的概括性研究是必须的。另外,性二态可能会影响雌雄异株植物沿着环境梯度的频率和分布,引起生态位分化与性别空间分异。目前,控制性别比例偏差的原因和机制还知之甚少。本综述旨在讨论不利环境下的性别特异性响应与性别比例偏差,有利于深入的理解性二态对环境胁迫的响应。  相似文献   

20.
Many neural systems are undergoing marked development over adolescence, which may heighten an animal's vulnerability to stressors. One consequence may be altered sensitivity to drugs of abuse. We previously reported that social stressors in adolescence increased behavioral sensitization to nicotine in adulthood in female, but not male, rats. Here we examined whether social stressors in adolescence alter the functioning of the hypothalamic-pituitary-adrenal (HPA) axis by examining corticosterone release in response to restraint in adulthood. To further assess effects of social stressors on behavioral sensitivity to psychostimulants, we examined locomotor activity in response to nicotine and to amphetamine. In a second set of experiments, we investigated whether the same procedure of social stressors administered in adulthood produces effects similar to that observed when administered in adolescence. Rats underwent daily 1 h isolation followed by pairing with a new cage mate on either postnatal days 33-48 (pubertal stress: PS) or days 65-80 (adult stress: AS). Three weeks later rats tested for either: (a) corticosterone levels were measured in response to restraint, or (b) locomotor sensitization to nicotine (0.25 mg/kg; 5 days) followed by an amphetamine challenge (0.5 mg/kg) 24 h later. Effects of social stressors were evident only in females. PS females had increased locomotor activity to amphetamine compared to controls, and AS females had increased corticosterone release compared to controls. No effect of the social stressors was found in males at either age except for reduced weight gain during the stress procedure. Thus, females are more susceptible to the enduring effects of these moderate social stressors than are males. However, in terms of behavioral sensitivity to drugs of abuse, females may be more susceptible to stressors during adolescence than adulthood, although the reverse appears to be true for HPA function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号