首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The evolution of hybrid polyploid vertebrates, their viability and their perpetuation over evolutionary time have always been questions of great interest. However, little is known about the impact of hybridization and polyploidization on the regulatory networks that guarantee the appropriate quantitative and qualitative gene expression programme. The Squalius alburnoides complex of hybrid fish is an attractive system to address these questions, as it includes a wide variety of diploid and polyploid forms, and intricate systems of genetic exchange. Through the study of genome-specific allele expression of seven housekeeping and tissue-specific genes, we found that a gene copy silencing mechanism of dosage compensation exists throughout the distribution range of the complex. Here we show that the allele-specific patterns of silencing vary within the complex, according to the geographical origin and the type of genome involved in the hybridization process. In southern populations, triploids of S. alburnoides show an overall tendency for silencing the allele from the minority genome, while northern population polyploids exhibit preferential biallelic gene expression patterns, irrespective of genomic composition. The present findings further suggest that gene copy silencing and variable expression of specific allele combinations may be important processes in vertebrate polyploid evolution.  相似文献   

3.
4.
5.
Sun HY  Wang F  Cao WG 《遗传》2012,34(8):985-992
体细胞核移植和诱导多能干细胞技术表明已分化的体细胞可以转变命运。最近的研究再一次验证了成熟体细胞可以通过外源转录因子的导入,直接重编程为其他类型的体细胞或祖细胞。这种重编程技术称为谱系重编程(Lineage reprogramming)。这项技术不仅在再生医学领域具有广阔的应用前景,而且在动物生物技术中也应用广泛。它不但避免了伦理争议,还提供了便利的重编程方法,同时也为基因表达调控的研究提供了重要的手段。文章从谱系重编程的方式、谱系重编程的特点及应用前景等3个方面进行了综述,旨在对相关领域的研究人员起到借鉴作用。  相似文献   

6.
7.
Deployment of the gene-regulatory network (GRN) responsible for skeletogenesis in the embryo of the sea urchin Strongylocentrotus purpuratus is restricted to the large micromere lineage by a double negative regulatory gate. The gate consists of a GRN subcircuit composed of the pmar1 and hesC genes, which encode repressors and are wired in tandem, plus a set of target regulatory genes under hesC control. The skeletogenic cell state is specified initially by micromere-specific expression of these regulatory genes, viz. alx1, ets1, tbrain and tel, plus the gene encoding the Notch ligand Delta. Here we use a recently developed high throughput methodology for experimental cis-regulatory analysis to elucidate the genomic regulatory system controlling alx1 expression in time and embryonic space. The results entirely confirm the double negative gate control system at the cis-regulatory level, including definition of the functional HesC target sites, and add the crucial new information that the drivers of alx1 expression are initially Ets1, and then Alx1 itself plus Ets1. Cis-regulatory analysis demonstrates that these inputs quantitatively account for the magnitude of alx1 expression. Furthermore, the Alx1 gene product not only performs an auto-regulatory role, promoting a fast rise in alx1 expression, but also, when at high levels, it behaves as an auto-repressor. A synthetic experiment indicates that this behavior is probably due to dimerization. In summary, the results we report provide the sequence level basis for control of alx1 spatial expression by the double negative gate GRN architecture, and explain the rising, then falling temporal expression profile of the alx1 gene in terms of its auto-regulatory genetic wiring.  相似文献   

8.
The bilaterian animals are divided into three great branches: the Deuterostomia, Ecdysozoa, and Lophotrochozoa. The evolution of developmental mechanisms is less studied in the Lophotrochozoa than in the other two clades. We have studied the expression of Hox genes during larval development of two lophotrochozoans, the polychaete annelids Nereis virens and Platynereis dumerilii. As reported previously, the Hox cluster of N. virens consists of at least 11 genes (de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G, Nature, 399:772–776, 1999; Andreeva TF, Cook C, Korchagina NM, Akam M, Dondua AK, Ontogenez 32:225–233, 2001); we have also cloned nine Hox genes of P. dumerilii. Hox genes are mainly expressed in the descendants of the 2d blastomere, which form the integument of segments, ventral neural ganglia, pre-pygidial growth zone, and the pygidial lobe. Patterns of expression are similar for orthologous genes of both nereids. In Nereis, Hox2, and Hox3 are activated before the blastopore closure, while Hox1 and Hox4 are activated just after this. Hox5 and Post2 are first active during the metatrochophore stage, and Hox7, Lox4, and Lox2 at the late nectochaete stage only. During larval stages, Hox genes are expressed in staggered domains in the developing segments and pygidial lobe. The pattern of expression of Hox cluster genes suggests their involvement in the vectorial regionalization of the larval body along the antero-posterior axis. Hox gene expression in nereids conforms to the canonical patterns postulated for the two other evolutionary branches of the Bilateria, the Ecdysozoa and the Deuterostomia, thus supporting the evolutionary conservatism of the function of Hox genes in development. Milana Kulakova, Nadezhda Bakalenko and Elena Novikova contributed equally to this work.  相似文献   

9.
A novel protein LUZP with 3 leucine zipper motifs at its amino terminus is predominantly expressed in the adult brain. A modified gene targeting approach was employed in an attempt to establish in vitro and in vivo models in which Luzp is knock-out (KO) for phenotype assessment and a reporter gene lacZ is knock-in (KI) for tracing its expression. We report in this study the molecular cloning of the Luzp gene, its targeting vector construction and Luzp-KO/lacZ-KI embryonic stem (ES) clone selection. Since LUZP is also expressed in ES cells, the possibility of embryonic lethality cannot be excluded when attempting to establish Luzp-null mutant mice. We have therefore examined the development of homozygous Luzp-KO/lacZ-KI clones in nude mice. Tissue types derived from all three embryonic germ layers were observed in teratomas developed in nude mice. In situ X-gal staining further revealed restricted expression of LUZP in neural lineage cells.  相似文献   

10.
杆状病毒表达系统的发展   总被引:3,自引:0,他引:3  
杆状病毒是近年来被广泛用于高效表达外源蛋白的载体系统,本文就杆状病毒表达系统的生物学特性、转染载体、重组病毒的筛选、基因表达调控及其发展应用等方面作一概述。  相似文献   

11.
The neural crest is a transitory and pluripotent structure of the vertebrate embryo composed of cells endowed with developmentally regulated migratory properties. We review here a series of studies carried out both in vivo and in vitro on the ontogeny of the neural crest in the avian embryo. Through in vivo studies we established the fate map of the neural crest along the neuraxis prior to the onset of the migration and we demonstrated the crucial role played by the tissue environment in which the crest cells migrate in determining their fate. Moreover, the pathways of neural crest cell migration could also be traced by the quail-chick marker system and the use of the HNK1/NC1 monoclonal antibody (Mab). A large series of clonal cultures of isolated neural crest cells showed that, at migration time, most crest cells are pluripotent. Some, however, are already committed to a particular pathway of differentiation. The differentiation capacities of the pluripotent progenitors are highly variable from one to the other cell. Rare totipotent progenitors able to give rise to representatives of all the phenotypes (neuronal, glial, melanocytic, and mesectodermal) encountered in neural crest derivatives were also found. As a whole we propose a model according to which totipotent neural crest cells become progressively restricted (according to a stochastic rather than a sequentially ordered mechanism) in their potentialities, while they actively divide during the migration process. At the sites of gangliogenesis, selective forces allow only certain crest cells potentialities to be expressed in each type of peripheral nervous system (PNS) ganglia. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Mouse embryos of the NMRI strain between the 7th and 9th day of gestation were isolated from the uterus and dissected into the various tissue derivatives in order to investigate newly synthesized proteins during morphogenesis. The day 7 embryo was fragmented into trophoblast and ectoplacental cone, distal and proximal endoderm, extraembryonic and embryonic ectoderm. The day 8 and day 9 embryos were divided into trophoblast and placental anlage, yolk sac, amnion, and allantois, as well as cranial, central, and caudal embryonic tissue. The intact embryos were incubated in Dulbecco's minimum essential medium in the presence of 35S-methionine for 4 h, then dissected into the various fragments, and further processed for two-dimensional gel electrophoresis. Protein synthesis of the isolated tissue derivatives was analyzed and compared for the three developmental stages. Concerning the proteins with isoelectric points in the range of 4.5 to 8.0 and molecular weight ratio (M(r)) values between 20,000 and 200,000, we found several significant quantitative and qualitative differences in the various tissue fragments. In addition, we observed further quantitative and qualitative differences in protein synthesis during the postimplantation period investigated. We propose that the differences reflect some of the cell lineage- and developmental stage-specific changes in gene expression during early mammalian differentiation.  相似文献   

13.
14.
细胞谱系示踪技术   总被引:1,自引:0,他引:1  
细胞谱系示踪(cell lineage tracing)是指利用各种方式标记细胞,并对包括其后代所有细胞的增殖、分化以及迁移等活动进行追踪观察。自20世纪以来,谱系示踪技术为研究器官发育、组织损伤修复以及单细胞的分化命运提供了重要的手段。近些年,随着基因工程技术的飞速发展,细胞谱系示踪技术也有所突破,尤其是诱导性重组酶Cre/loxp系统的应用,极大地拓宽了细胞谱系示踪技术的应用范围。本文将结合细胞谱系示踪技术在多种研究中的应用,对该技术的原理、特点以及最新进展做一综述。  相似文献   

15.
16.
真核基因的快速克隆及表达   总被引:3,自引:0,他引:3  
以细胞间隙连接蛋白基因Cx26作为目的基因,通过T-A载体介导,构建真核表达重组载体pcDNA3.1( ) /Cx26,重组表达载体转染人鼻咽癌细胞株HNE1,表达Cx26间隙连接蛋白。  相似文献   

17.
During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.  相似文献   

18.
19.
Glial cells of the cerebellum originate from cells of the ventricular germinative layer, but their lineage has not been fully elucidated. For studying the glial cell lineage in vivo by retrovirus-mediated gene transfer, we introduced a marker retrovirus into the ventricular germinative layer of embryonic day 13 mice. In the resulting adult cerebella, virus-labeled glial cells were grouped in discrete clusters, and statistical analysis showed that these clusters represented clones in high probability. Of 71 of the virus-labeled glial clusters, 33 clusters were composed of astrocytes/Bergmann glia, 10 were composed of only white matter astrocytes, and 24 were composed of only oligodendrocytes. No glial clusters contained virus-labeled neurons. These results suggest that astrocytes/Bergmann glia, white matter astrocytes and oligodendrocytes immediately arise from separate glial precursors: these three glial lineages may diverge in the course of cerebellar development.  相似文献   

20.
LH/CG受体是一种与G蛋白偶联的在哺乳动物生殖及性功能调节起重要作用的糖蛋白激素受体。介绍了鼠、猪及人等哺乳动物、鸟类、鱼类LH/CG受体基因及昆虫,无脊椎动物等LH/CG类受体的基因克隆表达及特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号