首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamine-linked oligonucleotides for DNA triple helix formation.   总被引:7,自引:7,他引:0       下载免费PDF全文
The concept of antigene therapy of disease is based on the ability of an oligonucleotide (the therapeutic agent) to bind to double-stranded genomic DNA (the target associated with the disease). Examples are herein given of the linkage of a series of polyamines to a 21-mer homopyrimidine oligonucleotide. These conjugated 21-mers can each form a triple helix with an appropriate double-stranded homopurine-homopyrimidine DNA according to Hoogsteen base-pairing rules. No triple helix was found when unmodified third strand was used at 10 mM sodium phosphate, pH 6.5, 100 mM sodium chloride solution. In contrast, the spermine-conjugated oligonucleotide had a melting temperature of 42 degrees C. According to the melting profile, the appended spermine moiety was found to affect the Tm only of the triple helix, but not of the subsequent melting of the underlying double helix. The Tm enhancing ability of the spermine-conjugate was found to be better than that of other polyamine-conjugates.  相似文献   

2.
Homopyrimidine oligodeoxynucleotides recognize the major groove of the DNA double helix at homopurine.homopyrimidine sequences by forming local triple helices. The oligonucleotide is bound parallel to the homopurine strand of the duplex. This binding can be revealed by a footprinting technique using copper-phenanthroline as a cleaving reagent. Oligonucleotide binding in the major groove prevents cleavage by copper-phenanthroline. The cleavage patterns on opposite strands of the duplex at the boundaries of the triple helix are asymmetric. They are shifted to the 3'-side, indicating that the copper-phenanthroline chelate binds in the minor groove of the duplex structure. Binding of the chelate at the junction between the triple and the double helix is not perturbed on the 5'-side of the bound homopyrimidine oligonucleotide. In contrast, a strong enhancement of cleavage is observed on the purine-containing strand at the triplex-duplex junction on the 3'-side of the homopyrimidine oligonucleotide.  相似文献   

3.
We have studied the conformation of a 17 base-pair homopyrimidine.homopurine triple helix formed on a fragment of duplex DNA derived from Simian Virus SV40. Gel retardation assays indicate that an 80 base-pair fragment has an altered conformation when the triple helix is formed, which is most likely to result from an induced bend in the DNA. Investigation of the detailed conformation of the double helix-triple helix junctions has been performed by means of molecular modelling. Bending on the 5' and 3' sides of the third strand oligonucleotide are not located at equivalent positions with respect to the junctions, which is explained in terms of base stacking. The junction effects on DNA structure, induced by the requirement for cytosine protonation in the Hoogsteen-bonded strand to form CGC+ base triplets, are also discussed.  相似文献   

4.
The stability of a triple helix formed between a DNA duplex and an incoming oligonucleotide strand strongly depends on the solvent conditions and on intrinsic chemical and conformational factors. Attempts to increase triple helix stability in the past included chemical modification of the backbone, sugar ring, and bases in the third strand. However, the predictive power of such modifications is still rather poor. We therefore developed a method that allows for rapid screening of conformationally diverse third strand oligonucleotides for triplex stability in the parallel pairing motif to a given DNA double helix sequence. Combinatorial libraries of oligonucleotides of the requisite (fixed) base composition and length that vary in their sugar unit (ribose or deoxyribose) at each position were generated. After affinity chromatography against their corresponding immobilized DNA target duplex, utilizing a temperature gradient as the selection criterion, the oligonucleotides forming the most stable triple helices were selected and characterized by physicochemical methods. Thus, a series of oligonucleotides were identified that allowed us to define basic rules for triple helix stability in this conformationally diverse system. It was found that ribocytidines in the third strand increase triplex stability relative to deoxyribocytidines independently of the neighboring bases and position along the strand. However, remarkable sequence-dependent differences in stability were found for (deoxy)thymidines and uridines.  相似文献   

5.
6.
The distribution of breaks produced in both strands of a DNA duplex by the decay of 125I carried by a triplex-forming DNA oligonucleotide was studied at single nucleotide resolution. The 125I atom was located in the C5 position of a single cytosine residue of an oligonucleotide designed to form a triple helix with the target sequence duplex. The majority of the breaks (90%) are located within 10 bp around the decay site. The addition of the free radical scavenger DMSO produces an insignificant effect on the yield and distribution of the breaks. These results suggest that the majority of these breaks are produced by the direct action of radiation and are not mediated by diffusible free radicals. The frequency of breaks in the purine strand was two times higher that in the pyrimidine strand. This asymmetry in the yield of breaks correlates with the geometry of this type of triplex; the C5 of the cytosine in the third strand is closer to the sugar-phosphate backbone of the purine strand. Moreover, study of molecular models shows that the yield of breaks at individual bases correlates with distance from the 125I decay site. We suggest the possible use of 125I decay as a probe for the structure of nucleic acids and nucleoprotein complexes.  相似文献   

7.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

8.
The effect of oligonucleotide-directed triple-helix formation on the binding of a protein to an immediately adjacent sequence has been examined. A double-stranded oligonucleotide was designed with a target site for the binding of a pyrimidine oligonucleotide located immediately adjacent to the recognition sequence for the herpes simplex virus type 1 (HSV-1) origin of replication binding protein, which is encoded by the UL9 gene of HSV-1. Since the optimal conditions for the binding of the UL9 protein and the pyrimidine oligonucleotide to the duplex DNA are markedly different, a pyrimidine oligonucleotide was designed to optimize binding affinity and specificity for the target duplex oligonucleotide. Consideration was given to length and sequence composition in an effort to maximize triple-strand formation under conditions amenable to the formation of the UL9-DNA complex. Using gel mobility shift assays, a trimolecular complex composed of duplex DNA bound to both a third oligonucleotide strand and the UL9 protein was detected, indicating that the UL9-DNA complex is compatible with the presence of a triple helix in the immediately adjacent sequences.  相似文献   

9.
Topoisomerase I is an ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin. To achieve a sequence-specific cleavage of DNA by topoisomerase I, a triple helix-forming oligonucleotide was covalently linked to indolocarbazole-type topoisomerase I poisons. The three indolocarbazole-oligonucleotide conjugates investigated were able to direct topoisomerase I cleavage at a specific site based upon sequence recognition by triplex formation. The efficacy of topoisomerase I-mediated DNA cleavage depends markedly on the intrinsic potency of the drug. We show that DNA cleavage depends also upon the length of the linker arm between the triplex-forming oligonucleotide and the drug. Based on a known structure of the DNA-topoisomerase I complex, a molecular model of the oligonucleotide conjugates bound to the DNA-topoisomerase I complex was elaborated to facilitate the design of a potent topoisomerase I inhibitor-oligonucleotide conjugate with an optimized linker between the two moieties. The resulting oligonucleotide-indolocarbazole conjugate at 10 nM induced cleavage at the triple helix site 2-fold more efficiently than 5 microM of free indolocarbazole, while the other drug-sensitive sites were not cleaved. The rational design of drug-oligonucleotide conjugates carrying a DNA topoisomerase poison may be exploited to improve the efficacy and selectivity of chemotherapeutic cancer treatments by targeting specific genes and reducing drug toxicity.  相似文献   

10.
11.
UV-absorption spectrophotometry and molecular modeling have been used to study the influence of the chemical nature of sugars (ribose or deoxyribose) on triple helix stability. For the Pyrimidine.purine* Pyrimidine motif, all eight combinations were tested with each of the three strands composed of either DNA or RNA. The chemical nature of sugars has a dramatic influence on triple helix stability. For each double helix composition, a more stable triple helix was formed when the third strand was RNA rather than DNA. No stable triple helix was detected when the polypurine sequence was made of RNA with a third strand made of DNA. Energy minimization studies using the JUMNA program suggested that interactions between the 2'-hydroxyl group of the third strand and the phosphates of the polypurine strand play an important role in determining the relative stabilities of triple-helical structures in which the polypyrimidine third strand is oriented parallel to the polypurine sequence. These interactions are not allowed when the third strand adopts an antiparallel orientation with respect to the target polypurine sequence, as observed when the third strand contains G and A or G and T/U. We show by footprinting and gel retardation experiments that an oligoribonucleotide containing G and A or G and U fails to bind double helical DNA, while the corresponding DNA oligomers form stable triple-helical complexes.  相似文献   

12.
Oligonucleotides can be used as sequence-specific DNA ligands by forming a local triple helix. In order to form more stable triple-helical structures or prevent their degradation in cells, oligonucleotide analogues that are modified at either the backbone or base level are routinely used. Morpholino oligonucleotides appeared recently as a promising modification for antisense applications. We report here a study that indicates the possibility of a triple helix formation with a morpholino pyrimidine TFO and its comparison with a phosphodiester and a phosphoramidate oligonucleotide. At a neutral pH and in the presence of a high magnesium ion concentration (10 mM), the phosphoramidate oligomer forms the most stable triple helix, whereas in the absence of magnesium ion but at a physiological monovalent cation concentration (0.14 M) only morpholino oligonucleotides form a stable triplex. To our knowledge, this is the first report of a stable triple helix in the pyrimidine motif formed by a noncharged oligonucleotide third strand (the morpholino oligonucleotide) and a DNA duplex. We show here that the structure formed with the morpholino oligomer is a bona fide triple helix and it is destabilized by high concentrations of potassium ions or divalent cations (Mg(2+)).  相似文献   

13.
The interaction of netropsin, a minor groove binding drug, with T-A-T triple helix and A-T double helix was studied using circular dichroism spectroscopy and thermal denaturation. The triple helix was made by an oligonucleotide (dA)12-x-(dT)12-x-(dT)12, where x is a hexaethylene glycol chain bridged between the 3' phosphate of one strand and the 5' phosphate of the following strand. This oligonucleotide is able to fold back on itself to form a very stable triplex. Changing the conditions allows the same oligonucleotide in a duplex form with a (dT)12 dangling arm. Circular dichroism spectroscopy demonstrates that netropsin can bind to the triple helical structure. Spectral analysis shows that the bound drug exhibits a conformation and an environment similar in double-stranded and in triple-stranded structure. However, the binding constant to the triple-stranded structure is found smaller than the binding constant to the double-stranded one. Thermal denaturation experiments demonstrate that netropsin destabilizes the triplex whereas it stabilizes the duplex.  相似文献   

14.
Abstract

Fluorescein labeled oligonucleotide probes with non-nucleotide linker have been synthesized and used to monitor hybrid formation to detect DNA sequences in solution. Fluorescence anisotropy, r, was adopted as an index to monitor triple helix formation and the behaviour of F-Probe in solution. An appreciable increase in anisotropy was observed upon use of non-nucleotide linker in the fluorescence probe as compared to that of the F-Probe without non-nucleotide linker.  相似文献   

15.
16.
A novel method of analysis of double-stranded DNA-ligand interaction is presented. The interaction is monitored by the fluorescence of a DNA bis-intercalator oxazole homodimer YoYo-3. The fluorescence intensity or its decay time reflects the modification of the DNA double helix. The DNA sequence is scanned by hybridization with short oligomers having consecutively overlapping complementary sequences to analyse the sequence specificity of binding. In our experiments we used as ligands the minor groove binders netropsin, SN6999 (both with AT-preference), the GC-specific ligand chromomycin A3 as well as the derivative SN6113 (non-specific interaction), which displace the bis-intercalator YoYo-3 or influence the duplex structure in such away that the fluorescence intensity and lifetime decrease in comparison to a ligand-free screening. The changes of fluorescence emission clearly define the binding motif and indicate minor groove interactions with a reduced DNA binding site. Titration of the ligand quantitatively characterizes its binding by determining the dependence of the binding constant on the oligonucleotide sequence.  相似文献   

17.
By means of molecular modelling, electrostatic interactions are shown to play an important role in the sequence-dependent structure of triple helices formed by a homopyrimidine oligonucleotide bound to a homopurine. homopyrimidine sequence on DNA. This is caused by the presence of positive charges due to the protonation of cytosines in the Hoogsteen-bonded strand, required in order to form C.GxC+ triplets. Energetic and conformational characteristics of triple helices with different sequences are analyzed and discussed. The effects of duplex mismatches on the triple helix stability are investigated via thermal dissociation using UV absorption.  相似文献   

18.
Intercalating complexes of rhodium(III) are strong photo-oxidants that promote DNA strand cleavage or electron transfer through the double helix. The 1.2 A resolution crystal structure of a sequence-specific rhodium intercalator bound to a DNA helix provides a rationale for the sequence specificity of rhodium intercalators. It also explains how intercalation in the center of an oligonucleotide modifies DNA conformation. The rhodium complex intercalates via the major groove where specific contacts are formed with the edges of the bases at the target site. The phi ligand is deeply inserted into the DNA base pair stack. The primary conformational change of the DNA is a doubling of the rise per residue, with no change in sugar pucker from B-form DNA. Based upon the five crystallographically independent views of an intercalated DNA helix observed in this structure, the intercalator may be considered as an additional base pair with specific functional groups positioned in the major groove.  相似文献   

19.
20.
J A McKenzie  P R Strauss 《Biochemistry》2001,40(44):13254-13261
Apurinic/apyrimidinic endonuclease (AP endo) is a key enzyme in oxidative damage DNA repair. The enzyme, which repairs abasic sites, makes a single nick 5' to the phosphodeoxyribose, leaving a free 3'-hydroxyl. We recently described single turnover kinetics for human recombinant AP endo acting on an oligonucleotide with a single abasic site. We hypothesized that the structural changes induced by the presence of a second abasic site might provide insight into how AP endo recognizes the first abasic site. Here we performed steady state and single turnover experiments using bistranded abasic site substrates, with the second site located on the complementary strand to the one being followed and either opposite to the first or displaced in the 5' direction. All sites on the complementary strand were within half a helical turn of the first. The catalytic efficiency was reduced 80 to 96% and the Kd for substrate binding and dissociation was elevated 40- to 125-fold. The smaller changes occurred when the second site was opposite the first site or displaced by four nucleotides. In addition, if the second abasic site was directly across the helix or displaced by 1 or 3 nucleotides from the first abasic site, cleavage of the first abasic site was subject to apparent substrate inhibition, which did not occur if the second abasic site was displaced by four nucleotides from the first. While a substrate containing a nick without a phosphodeoxyribose on the contralateral strand abasic site did not inhibit nicking of the first strand, a substrate with a nicked abasic site on the contralateral strand was an even stronger inhibitor of enzyme action than an oligonucleotide containing the corresponding abasic site on each strand. Consequently, the inhibitory effect of the second abasic site is probably the result of prior cleavage of the abasic site on the contralateral strand with resulting distortions to the DNA helix that interfere with enzyme binding and/or cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号