首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3T3-L1 adipocytes promote the growth of mammary epithelium   总被引:4,自引:0,他引:4  
Murine mammary epithelium grows in association with predominantly adipocyte stroma in vivo. To investigate potential growth-promoting effects of adipocytes on mammary epithelium, we developed a co-culture system of mammary epithelium and adipocytes by taking advantage of the 3T3-L1 cell line. These cells undergo adipocyte differentiation when the culture reaches confluence and growth ceases. Mid-pregnant murine mammary epithelium was plated on lethally irradiated feeder layers of 3T3-L1 adipocytes, undifferentiated 3T3-L1 cells, 3T3-C2 fibroblasts (a subclone of 3T3 cells that does not undergo adipocyte differentiation), or tissue culture plastic. Mammary epithelial colony size on adipocyte feeder layers was 2-fold larger than colonies on 3T3-C2 cells and 4-fold larger than colonies on tissue culture plastic. Measurement of tritiated thymidine [3H]TdR incorporation and labelling index in mammary cells was significantly higher on adipocytes than on other feeder layers or plastic. There was a 6-fold increase in mammary cell number after 5 days in culture when mammary epithelium was plated on substrate-attached material ('extracellular matrix') derived from 3T3-L1 cells and a 4-fold increase in cell number when plated on plastic in conditioned medium derived from 3T3-L1 adipocytes compared with growth on plastic in unconditioned medium. We conclude that interaction of mammary epithelium with adipocytes results in a marked increase in proliferation of mammary epithelium and that extracellular components may mediate this effect.  相似文献   

2.
We showed that the synthesis and secretion of type IV collagen, entactin, and laminin were enhanced when adipose conversion of 3T3-L1 cells at confluence was stimulated by hormones (Y. Aratani and Y. Kitagawa (1988) J. Biol. Chem. 263, 16163-16169). Ascorbic acid phosphate (Asc-P) stimulated the synthesis and secretion of type IV collagen and other collagens from both 3T3-L1 preadipocytes and adipocytes. The synthesis and secretion of laminin and entactin were not affected by Asc-P. The continuous addition of Asc-P stimulated cell growth and increased cell density at confluence 1.3-fold. Concomitantly, Asc-P remarkably accelerated the emergence of lipoprotein lipase, glycerophosphate dehydrogenase, and Oil Red O-stainable lipid droplets. These findings suggest an important role for type IV collagen in adipocyte differentiation.  相似文献   

3.
In the current studies we examined the effects of transforming growth factor type beta (TGF-beta) on the control of differentiation of BALB/c 3T3 T stem cells. We report that TGF-beta is a potent, reversible inhibitor of adipocyte differentiation (50% inhibition at approximately 0.06-0.08 ng/ml), while other biologically active polypeptides, such as epidermal growth factor (EGF), human growth hormone (hGH), and somatomedin C, have no specific effect on differentiation at even higher concentrations (200 ng/ml). We also report that TGF-beta inhibits differentiation in a cell cycle-dependent manner by its effect on a specific phase in the differentiation process. We therefore suggest that if TGF-beta is an important regulatory factor, one of its critical mechanisms of action may be its ability to inhibit the process of cell differentiation.  相似文献   

4.
Reports vary on the role of growth hormone (GH) in adipocyte differentiation. In this study, we showed that GH exerted dual effects depending on the stage of differentiation, using a serum-free culture of 3T3-L1 preadipocytes. GH promoted the differentiation when added to the medium during differentiation-inducing treatment with a hormone cocktail, but apparently suppressed it when added after the treatment. Only the suppressive effect was observed in the presence of 10% fetal bovine serum (FBS). Immunodepletion study showed that GH contributes to the differentiation-promoting activity of FBS. Insulin-like growth factor-1 could not replicate either the stimulative or the suppressive effect of GH. Stimulation of differentiation by GH involved the enhanced expression of mRNA of middle to late adipocyte markers. Among the key regulators of adipogenesis, peroxisome proliferator-activated receptor (PPAR) gamma and CCAAT/enhancer binding protein (C/EBP) alpha, but not C/EBPbeta, were stimulated for mRNA expression by GH added during the treatment with hormone cocktail. The stimulation of adipogenesis by GH was indeed due to the increase in the ratio of differentiated cells, though GH also promoted cell growth.  相似文献   

5.
In the current studies we examined the effects of transforming growth factor type β (TGF-β) on the control of differentiation of BALB/c 3T3 T stem cells. We report that TGF-β is a potent, reversible inhibitor of adipocyte differentiation (50% inhibition at ˜0.06–0.08 ng/ml), while other biologically active polypeptides, such as epidermal growth factor (EGF), human growth hormone (hGH), and somatomedin C, have no specific effect on differentiation at even higher concentrations (200 ng/ml). We also report that TGF-β inhibits differentiation in a cell cycle-dependent manner by its effect on a specific phase in the differentiation process. We therefore suggest that if TGF-β is an important regulatory factor, one of its critical mechanisms of action may be its ability to inhibit the process of cell differentiation.  相似文献   

6.
Adipocyte differentiation is a complex developmental process forming adipocytes from various precursor cells. The murine 3T3-L1 preadipocyte cell line has been most frequently used in the studies of adipocyte differentiation. Differentiation of 3T3-L1 preadipocytes includes a medium containing fetal bovine serum (FBS) with hormonal induction. In this study, we observed that differentiation medium containing adult bovine serum (ABS) instead of FBS did not support differentiation of preadipocytes. Impaired adipocyte differentiation was due to the presence of a serum protein factor in ABS that suppresses differentiation of preadipocytes. Using a proteomic analysis, alpha-2-macroglobulin and paraoxonase/arylesterase 1, which were previously shown to suppress differentiation of preadipocytes, were identified as anti-adipogenic proteins. Although their functional mechanisms have not yet been elucidated, the anti-adipogenic effects of these proteins are discussed. [BMB Reports 2013; 46(12): 582-587]  相似文献   

7.
8.
Abstract. The process of adipocyte differentiation in murine 3T3 T mesenchymal stem cells involves three well-defined steps: 1 predifferentiation growth arrest; 2 nonterminal (reversible) differentiation and 3 terminal differentiation associated with the irreversible loss of proliferative potential. To further investigate these processes, the effects of dimethyl sulphoxide (DMSO), an agent that affects differentiation in several other cell systems, was tested. The results show that DMSO modulates two distinct steps of adipocyte differentiation. The first effect is evident when growing 3T3 T cells are cultured in differentiation-inducing medium in the presence of DMSO. Therein the expression of adipocyte phenotype is inhibited because the cells fail to growtharrest at the predifferentiation growth arrest state. Instead in the presence of DMSO, cells growth-arrest at a biological state that does not support differentiation. The second effect is evident if nonterminally differentiated adipocytes are cultured in terminal differentiation-inducing medium containing DMSO. Therein the terminal step in differentiation is inhibited. These inhibitory effects occur in a dosage-dependent manner; maximum inhibition of differentiation requires 2% DMSO. Therefore, whereas DMSO typically promotes differentiation in other cell systems, DMSO inhibits multiple steps in the process of adipocyte differentiation. These observations support the conclusion that a single pharmacological agent can have markedly different effects on specific cell types. Even more important, the data establish that DMSO can now be used as a tool to study the molecular mechanisms involved in the multistep process of adipocyte differentiation.  相似文献   

9.
Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts   总被引:9,自引:0,他引:9  
Jessen BA  Stevens GJ 《Gene》2002,299(1-2):95-100
The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. Changes in gene expression were measured by DNA microarrays at three time points (24 h, 4 days, and 1 week) during the course of differentiation from preadipocytes to mature adipocytes. Several functional categories of genes were affected by adipocyte conversion. In addition, seven genes were found to be commonly altered by 5-fold or more by adipocyte conversion at all three time points. Lipocalin 2, haptoglobin, serum amyloid A3, stearoyl-CoA desaturase, and 11beta-hydroxysteroid dehydrogenase 1 were induced while actin alpha2 and procollagen VIII alpha1 were suppressed by adipocyte differentiation. Further study of the regulation of these genes and pathways will lead to an increased understanding of the biochemical pathways involved in adipocyte differentiation and possibly to the identification of new therapeutic targets for treatment of obesity and other metabolic diseases.  相似文献   

10.
We studied the effects of BMP-7/OP-1 on growth and differentiation of bone marrow stromal cells. BMS2, a mouse bone marrow stromal cell line capable of differentiating into adipocytes and osteoblasts, were treated in a serum-free medium containing differentiation agents that favor the expression of both lineages. BMP-7/OP-1 stimulated cell proliferation and differentiation concomitantly. These effects were dose- and growth phase-dependent. Cells were more sensitive to the treatment early in the culture (30-40% confluence) with a significant increase in cell proliferation and markers of differentiation at low concentrations. When treated later in the growth phase (90-100% confluence), no significant increase in cell proliferation was seen. The concentration requirement for cells later in the culture to reach an equivalent degree of differentiation was 3-10- fold higher than for cells treated early. In both cases, the effects on adipocyte differentiation were biphasic; low concentrations stimulated adipocyte differentiation which was inhibited at higher concentrations where stimulation of osteoblast markers were observed. We conclude that cell proliferation and cell differentiation into adipocyte/osteoblast can occur simultaneously under BMP-7/OP-1 treatment.  相似文献   

11.
MC3T3-E1 cells in culture exhibit a temporal sequence of development similar to in vivo bone formation. To examine whether the developmental expression of the osteoblast phenotype depends on serum derived factors, we compared the timedependent expression of alkaline phosphatase (ALP)-a marker of osteoblastic maturation- in MC3T3-E1 cells grown in the presence of fetal bovine serum (FBS) or resin/charcoal-stripped (AXC) serum. ALP was assessed by measuring enzyme activity, immunoblotting, and Northern analysis. Growth of MC3T3-E1 cells in FBS resulted in the programmed upregulation of alkaline phosphatase (ALP) post-proliferatively during osteoblast differentiation. In the presence of complete serum, actively proliferating cells during the initial culture period expressed low ALP levels consistent with their designation as pre-osteoblasts, whereas postmitotic cultures upregulated ALP protein, message, and enzyme activity. In addition, undifferentiated early cultures of MC3T3-E1 cells were refractory to forskolin (FSK) stimulation of ALP, but became forskolin responsive following prolonged culture in FBS containing media. In contrast, MC3T3-E1 cells grown in AXC serum displayed limited growth and failed to show a time-dependent increase in alkaline phosphatase. Neither the addition of IGF-I to AXC serum to augment cell number or plating at high density restored the time-dependent upregulation of alkaline phosphatase. Cells incubated in AXC serum for 14 days, however, though expressing low alkaline phosphatase levels, maintained the capacity to upregulate ALP after FBS re-addition or forskolin activation of cAMP-dependent pathways. Such time-dependent acquisition of FSK responsiveness and serum stimulation of ALP expression only in mature osteoblasts indicate the possible presence of differentiation switches that impart competency for a subset of osteoblast developmental events that require complete serum for maximal expression. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.  相似文献   

13.
The 3T3-F442A preadipocyte cell line was previously shown to possess specific glucocorticoid receptors whose number increased in the time course of differentiation. We have examined the effects of a three day dexamethasone treatment, added at confluence, on cells differentiated in the presence or absence of insulin. Triglyceride accumulation, polyamine content as well as glycerophosphate dehydrogenase and fatty acid synthetase activities were measured during the adipose conversion. We have also determined 2-deoxyglucose uptake in non-differentiated and differentiated cells. Dexamethasone was shown to decrease the adipose conversion by 3T3-F442A cells in the presence or absence of insulin. Intracellular spermidine content in differentiating cells was sensitive to dexamethasone and insulin in the same way as an enzymatic marker of terminal differentiation, glycerophosphate dehydrogenase. Dexamethasone decreases the 2 deoxyglucose uptake in non-differentiated and differentiated cells while insulin increases this uptake only in differentiated cells. This work shows that glucocorticoids inhibit adipocyte metabolism at distinct levels and suggests that these hormones might play an important role in the regulation of adipose tissue mass.Abbreviations DEX dexamethasone - FAS fatty acid synthetase - GPDH glycerophosphate dehydrogenase - MIX 1-methyl-3-isobutylxanthine  相似文献   

14.
15.
In order to further investigate the connection between transport and growth control, 3T3 cells, SV40 transformed 3T3 cells (SV101), and three revertant cell lines derived from SV101 which have regained certain manifestations of growth control were used. Transport rates of 2-amino-isobutyric acid and 3-O-methyl-D-glucose were measured in sparse, confluent, serum-starved, and serum-stimulated cultures. As shown before, cessation of 3T3 cell growth in G0 under conditions of confluence or serum deprivation was associated with reduced rates of transport for both compounds, whereas the density and serum dependence of growth and transport was largely eliminated in SV101. The density revertant F1SV101, which has regained density regulation of growth similar to 3T3 cells, has also regained density regulation of transport. Neither growth nor transport were serum dependent. The serum revertants AgammaSV7 and LsSV6 have regained both density and serum regulation of growth, but not according to the original mechanism of 3T3 cells of entry into a Go state. Transport was high under conditions of confluence or serum deprivation. Thus for these cells rates of transport were not reduced simply as a consequences of slower cell growth nor were low transport rates responsible for growth arrest. The data are consistent with the possibility that growth arrest specifically in the G0 state could shut off a number of cellular activities, including transport.  相似文献   

16.
The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these growth factor receptors.  相似文献   

17.
The mouse 3T3-L1 fibroblastic cell line rapidly differentiates to an adipocyte phenotype when post-confluent cells are treated for 48 h in fetal calf serum-containing medium supplemented with 1 microM dexamethasone (D), 0.5 mM methylisobutylxanthine (M) and 10 micrograms/ml insulin (I). D and I act synergistically to commit the cells to differentiate 24-48 h after initiating treatment, and this is blocked by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate. In order to identify cellular proteins involved in the differentiation process we analyzed differentiating 3T3-L1 cells using two-dimensional electrophoresis on large format gels. We observed changes in over 300 proteins during differentiation (over 100 within 5 h of initiating differentiation) and many of these are also changed at the level of mRNA (by analysis of in vitro translation products). About 75% of the initial changes were maximally induced by treatment with a combination of M and I, while no more than 10 proteins and their corresponding mRNAs were maximally induced by D within 3.5 h. Another 10 proteins were synergistically regulated by the combination of all three agents (DMI) within 3.5 h. Additional species were induced at later times. Five of these were synergistically induced by treatments that lead to differentiation, were first expressed at elevated levels during commitment and remained elevated in fully differentiated adipocytes. One or more of these proteins could well have a functional role in the commitment to and/or expression of the adipocyte differentiation program.  相似文献   

18.
Sodium butyrate arrests the growth of actively proliferating Swiss 3T3 cells. A previous report from our laboratory describes the pattern of expression of a representative group of growth-associated genes following treatment of Swiss 3T3 cells with sodium butyrate. The results of this study suggest that sodium butyrate-induced growth arrest involves events which lead to adipocyte differentiation (Toscani, A., Soprano, D.R., and Soprano, K.J. (1988) Oncogene Res. 3, 233-238). However, while sodium butyrate by itself could apparently initiate adipogenesis, it alone was not sufficient to maintain this differentiation state. We now wish to further characterize the role of sodium butyrate in adipocyte differentiation. Subconfluent cultures of Swiss 3T3 cells were treated with sodium butyrate in combination with other agents known to induce Swiss 3T3 cell adipogenesis (e.g. 1-methyl-3-isobutylxanthine, insulin, and dexamethasone) and then analyzed at various times thereafter for: (a) the presence of high concentrations of intracellular lipid as detected by microscopic examination of treated cells following staining with lipid-specific dyes and (b) the expression of four genes known to be modulated during the differentiation of preadipocytes into mature adipocytes (actin, adipsin, lipoprotein lipase, and adipocyte P2). Our results show that sodium butyrate in combination with either insulin or dexamethasone can fully differentiate Swiss 3T3 cells into adipocytes, at least as determined by accumulation of high levels of intracellular lipid. Moreover, the sodium butyrate-mediated process of differentiation can occur in subconfluent, actively proliferating cells. Thus, these experiments describe a new, previously unidentified activity of sodium butyrate and also suggest that this model system may be a useful one to study the relationship between growth arrest and differentiation.  相似文献   

19.
The hormonal regulation of leptin mRNA expression and the association between leptin expression and adipocyte differentiation were examined in primary cultures of porcine S-V cells with Northern blot and immunocytochemical analysis. Seeding for 3 days with fetal bovine serum (FBS) with varying levels of dexamethasone (Dex) increased levels of leptin mRNA in a dosedependent manner in parallel with increases in the proportion of preadipocytes (AD-3 positive cells; AD-3, a preadipocyte marker). Six-day treatment with 10 or 850 nM insulin after FBS+Dex treatment resulted in a similar increase in leptin mRNA expression and morphological differentiation. However, significantly lower levels of leptin mRNA and smaller fat cells were observed in cultures treated with 1 nM insulin or 10 nM insulin-like growth factor-I (IGF-I). Dex-induced increases in leptin mRNA levels and AD-3 cell numbers were blocked completely by the addition of transforming growth factor-β (TGF-β) to FBS+Dex-treated cultures. However TGF-β significantly increased fat cell size and leptin mRNA expression when added to ITS (insulin, 850 nM; transferrin, 5 μg/ml; and selenium, 5 ug/mL) treated cultures during the lipid-filling stage. When added with FBS+DEX for the first 3 days, growth hormone (GH) did not influence the Dex-induced increase in AD-3 cells and leptin mRNA expression, but GH reduced leptin mRNA levels when added with insulin for 6 days after FBS+Dex. These results demonstrated that regulation of leptin mRNA expression by Dex, insulin, IGF-I, TGF-β, and GH may be associated with changes in preadipocyte number and fat cell size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号