首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When native tonoplast vesicles of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie were energized by an artificial K+ gradient establishing only an inside-positive electrical membrane potential (), it was shown that was sufficient as the sole driving force and that a proton gradient (pH) is not required for malate uptake. Following [14C]malate uptake, K m-malate of the malate transporter was estimated as 2.7–3.0 mM, a value that would allow malate synthesis via phosphoenolpyruvate carboxylase and malate accumulation in vivo in view of the feed-back inhibition of cytosolic phosphoenolpyruvate carboxylase by malate. The maximum reaction velocity (V max) was found to be between 30 and 85 nmol malate·min–1·mg protein –1 , a value that would explain nocturnal malate accumulation in K. daigremontiana even if the transporter were operating below substrate saturation. Citrate (50 mM at pH 7) inhibited transport by 78%. The malate-transport protein of the tonoplast of K. daigremontiana may be a carboxylate uniporter with strong affinities for malate and citrate. From total tonoplast proteins solubilized from native tonoplast vesicles the malate transporter was functionally reconstituted into phospholipid liposomes. The malate transporter was purified and separated from the tonoplast H+-ATPase by hydroxyapatite chromatography, but not from the tonoplast H+-pyrophosphatase. The partially purified malate-transport protein was functionally reconstituted into phospholipid liposomes. In these final proteoliposomes, 0.6% of the protein of the initial tonoplast-vesicle preparation used for solubilization of membrane proteins was recovered. Using the specific rates of malate transport as a reference, i.e. rates of transport related to protein in the preparations, enrichment of the malate transporter in the final proteoliposomes obtained with the reconstitution of the hydroxyapatite eluate was 44-fold compared to the initial native tonoplast vesicles and 2000-fold compared to the liposomes reconstituted from solubilized tonoplast proteins. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the peptides from the final proteoliposomes, which were functional in malate transport, showed only a few polypeptide bands among which the malate transporter must be found.Abbreviations and Symbols CAM Crassulacean acid metabolism - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - Triton X-100 polyoxyethylene(9,10)p-t-octylphenol - pH proton gradient at the tonoplast - membrane potential at the tonoplast This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie and is now funded in SFB 199 (Teilprojekt B2) of the Deutsche Forschungsgemeinschaft. We thank Dr. Elke Fischer-Schliebs for valuable discussions and Dr. E. Martinoia for making us acquainted with his experimental approaches in his laboratory in Zürich, Switzerland, and for much valuable exchange. Dr. D.P.S. Verma, Ohio, USA, kindly provided Nod-26 antibodies, and the tonoplast H+-pyrophosphatase antibodies were a generous gift of Dr. M. Maeshima, Sapporo, Japan.  相似文献   

2.
A technique is described that allows a relatively rapid and controlled isolation of vacuoles from leaves of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana. The method involves polybase-induced lysis of mesophyllcell protoplasts and isolation of vacuoles on a discontinuous density gradient. ATPase activity is associated with the isolated vacuoles and is not attributable to contamination by cytoplasmic constituents. It is suggested that this ATPase is responsible for the energization of malic-acid accumulation in the vacuole in CAM plants.Abbreviation CAM crassulacean acid metabolism Dedicated to Professor Dr. W. Simonis on the occasion of his 75th birthday  相似文献   

3.
Net CO2 dark fixation of Kalanchoë daigremontiana varies with night temperature. We found an optimum of fixation at about 15° C; with increasing night temperature fixation decreased. We studied the temperature dependence of the activity of phosphoenolpyruvate (PEP)-carboxylase, the key enzyme for CO2 dark fixation. We varied the pH, the substrate concentration (PEP), and the L-malate and glucose-6-phosphate (G-6-P) concentration in the assay. Generally, lowering the pH and reducing the amount of substrate resulted in an increase in activation by G-6-P and in an increase in malate inhibition of the enzyme. Furthermore, malate inhibition and G-6-P activation increased with increasing temperature. Activity measurements between 10° C and 45°C at a given concentration of the effectors revealed that the temperature optimum and maximum activities at that optimum varied with the effector applied. Under the influence of 5 mol m-3 L-malate the temperature optimum and maximum activity dropped drastically, especially when the substrate level was low (at 0.5 mol m-3 PEP from 32° C to 20° C). G-6-P raised the temperature optimum and maximum activity when the substrate level was low. If both malate and G-6-P were present, intermediate values were measured. We suggest that changes in metabolite levels in K. daigremontiana leaves can alter the temperature features of PEP-carboxylase so that the observed in vivo CO2 dark fixation can be explained on the basis of PEP-carboxylase activity.Abbreviations PEP-c phosphoenolpyruvate carboxylase - CAM crassulacean acid metabolism - PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate  相似文献   

4.
During the endogenous circadian rhythm of carbon dioxide uptake in continuous light by a Crassula cean acid metabolism plant, Kalancho? daigremontiana, the two carboxylating enzymes, phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco), are active simultaneously, although, until now, only the role of PEPC in generating the rhythm has been acknowledged. According to the established model, the rhythm is primarily regulated at the PEPC activity level, modulated by periodic compartmentation of its inhibitor, malate, in the vacuole and controlled by tension/relaxation of the tonoplast. However, the circadian accumulation of malic acid (the main indicator of PEPC activity) dampened significantly within the first few periods without affecting the rhythm's amplitude. Moreover, the amount of malate accumulated during a free-running oscillation was several-fold lower than the amount expected if PEPC were the key carboxylating enzyme, based on a 1:1 stoichiometry of CO(2) and malate. Together with the observation that rates of CO(2) uptake under continuous light were higher than in darkness, the evidence shows that C(3) carboxylation greatly contributes to the generation of rhythmic CO(2) uptake in continuous light in this 'obligate' CAM plant. Because the shift from predominantly CAM to predominantly C(3) carboxylation is smooth and does not distort the trajectory of the rhythm, its control probably arises from a robust network of oscillators, perhaps also involving stomata.  相似文献   

5.
6.
N. Schilling  P. Dittrich 《Planta》1979,147(3):210-215
The degradation of starch by a protein fraction of Kalanchoë daigremontiana Hamet et Perrier, obtained by ammoniumsulfate precipitation (30–70%), was found to be catalyzed by -and -amylase (EC 3.2.1.1 and EC 3.2.1.2, respectively) and by starch phosphorylase (EC 2.4.1.1). The activity of these enzymes was determined by chromatographic analysis of the reaction products; separation and identification of -amylase was accomplished by heat-inactivation of -amylase and -glucosidase. When the interaction of amylolytic and phosphorolytic enzymes was comparatively studied, it was found that without inorganic phosphorus in the reaction mixture, 14C-starch was converted predominantly to maltose and glucose; supplementation with 1–10 mM orthophosphate (Pi) resulted in an increase in glucose-1-phosphate formation and a concomitant reduction of maltose production. Since the total volume of starch degradation remained approximately constant, Pi apparently inhibits -amylase (Ki about 3 mM Pi). Thus, free Pi in the cell participates in the regulation of starch catabolism, serving as a substrate for starch phosphorylase while simultaneously reducing the production of maltose. With respect to glucan synthesis, adenosinediphosphoglucose--1,4-glucosyltransferase (EC 2.4.1.22), maltose phosphorylase and maltoseglucosyltransferase were also found to be active. The last-named enzyme catalyzes an exchange between dextrins and is considered to provide primer carbohydrates for the synthesis of polyglucans.Abbreviations ADPG adenosinediphosphoglucose - G1P glucose-1-phosphate - PEG polyethylenglycol - PEP phosphoenolpyruvate - Pi orthophosphate  相似文献   

7.
The crassulacean acid metabolism (CAM) plant Kalancho? daigremontiana Hamet et Perrier de la Bathie shows an endogenous circadian rhythm of net CO2 exchange (J CO2 ) under constant conditions in continuous light. Previous studies have shown, however, that above a certain threshold temperature J CO2 changes from rhythmic to arrhythmic behaviour and that this is reversible when the temperature is lowered again. It is now demonstrated here, that this re-initiation of rhythmic J CO2 from arrhythmicity needs a sufficiently strong temperature signal as defined by its abruptness. Rhythmicity reappears only if the temperature is reduced rather rapidly. If the temperature is reduced slowly then arrhythmicity is retained even at a low temperature level which normally would allow rhythmicity. Under these circumstances, however, a distinct temperature increase followed by an abrupt temperature decrease immediately elicits regular oscillations of J CO2 at this lower temperature. We suggest that the strong temperature signals function as a definite synchronizer (“zeitgeber”) which synchronizes different cells and/or different leaf areas which remain desynchronized after application of only slow temperature changes. This is further supported by Fourier transform analyses, revealing a harmonic structure of the superficially arrhythmic time series of J CO2 after application of slow temperature reductions. This conclusion adds a spatial dimension to the otherwise purely time-dependent rhythmicity and arrhythmicity of J CO2 in CAM. Received: 18 May 1998 / Accepted: 30 June 1998  相似文献   

8.
Malate efflux from leaf cells of the Crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perrier was studied using leaf slices submerged in experimental solutions. Leaves were harvested at the end of the dark phase and therefore contained high malate levels. Water potentials of solutions were varied between 0 and −5 bar using mannitol (a slowly permeating solute) and ethylene glycol (a rapidly permeating solute), respectively. Mannitol solutions of water potentials down to −5 bar considerably reduced malate efflux. The slowly permeating solute mannitol reduces both water potential and turgor potential of the cells. The water potential of a mannitol solution of −5 bar is just above plasmolyzing concentration. Malate efflux in ethylene glycol at −5 bar was only slightly smaller than at 0 bar, and much higher than in mannitol at −5 bar. Tissues in rapidly permeating ethylene glycol would have turgor potentials similar to tissues in 0.1 mm CaSO4. The results demonstrate that malate efflux depends on turgor potential rather than on water potential of the cells.  相似文献   

9.
Ota K 《Plant physiology》1988,87(2):454-457
Kalanchoë blossfeldiana Poelln. cv Hikan plants were grown hydroponically with nutrient solution containing 5 millimolar NO3 (or NH4+) for 1 to 2 months and then transferred to nutrient solution containing no nitrogen. CO2 uptake at night, nocturnal increase in titratable acidity, and activity of phosphoenolpyruvate carboxylase increased after the transfer. Thus, transfer to nitrogen-deficient conditions stimulates Crassulacean acid metabolism (CAM photosynthesis) in K. blossfeldiana. The importance of the plant nitrogen status (nitrogen-withdrawal status) for induction and stimulation of CAM photosynthesis is discussed.  相似文献   

10.
Following electro-fusion of plant protoplasts the volume of the fused cell is the sum of the volumes of the parent cells. As shown for mesophyll protoplasts from leaves of Kalanchoë daigremontiana, the excess in membrane material arising from the reduction in membrane area is removed-at least to a larger extent — by the formation of vesicles which are visible in the light microscope. These vesicles, which may have been formed by the fusion of sub-microscopic vesicles, are observed in the contact zone of the fusing cells. The mechanism of the formation of vesicles during electro-fusion is discussed.  相似文献   

11.
In continuous light, the Crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier has a circadian rhythm of gas exchange with peaks occurring during the subjective night. The rhythm of gas exchange is coupled to a weak, reverse phased rhythm of quantum yield of photosystem II (Phi (PSII)). To test if the rhythm of Phi (PSII) persists in the absence of stomatal control, leaves were coated with a thin layer of translucent silicone grease which prevented CO2 and H2O exchange. In spite of this treatment, the rhythm of Phi (PSII) occurred with close to normal phase timing and with a much larger amplitude than in uncoated leaves. The mechanism underlying the Phi (PSII) rhythm in coated leaves can be explained by a circadian activity of phosphoenolpyruvate carboxylase (PEPC). At peaks of PEPC activity, the small amount of CO2 contained in the coated leaf could have become depleted, preventing the carboxylase activity of Rubisco and causing decreases in electron transport rates (observed as deep troughs of Phi (PSII) at 23-h in LL and at ca. 24-h intervals afterwards). Peaks of Phi (PSII) would be caused by a downregulation of PEPC leading to improved supply of CO2 to Rubisco. Substrate limitation of photochemistry at 23 h (trough of Phi (PSII)) was also suggested by the weak response of ETR in coated leaves to stepwise light enhancement. These results show that photosynthetic rhythmicity in K. daigremontiana is independent of stomatal regulation and may originate in the mesophyll.  相似文献   

12.
J. A. C. Smith  U. Lüttge 《Planta》1985,163(2):272-282
A study was made of the day-night changes under controlled environmental conditions in the bulk-leaf water relations of Kalanchoë daigremontiana, a plant showing Crassulacean acid metabolism. In addition to nocturnal stomatal opening and net CO2 uptake, the leaves of well-watered plants showed high rates of gas exchange during the whole of the second part of the light period. Measurements with the pressure chamber showed that xylem tension increased during the night and then decreased towards a minimum at about midday; a significant increase in xylem tension was also seen in the late afternoon. Cell-sap osmotic pressure paralleled leaf malate content and was maximum at dawn and minimum at dusk. The relationship between these two variables indicated that the nocturnally synthesized malate was apparently behaving as an ideal osmoticum. To estimate bulk-leaf turgor pressure, values for water potential were derived by correcting the pressurechamber readings for the osmotic pressure of the xylem sap. This itself was found to depend on the malate content of the leaves. Bulk-leaf turgor pressure changed rhythmically during the day-night cycle; turgor was low during the late afternoon and for most of the night, but increased quickly to a maximum of 0.20 MPa around midday. In water-stressed plants, where net CO2 uptake was restricted to the dark period, there was also an increase in bulk-leaf turgor pressure at the start of the light period, but of reduced magnitude. Such changes in turgor pressure are likely to be of considerable ecological importance for the water economy of crassulacean-acid-metabolism plants growing in their natural habitats.Abbreviation and symbols CAM Crassulacean acid metabolism - P turgor pressure - osmotic pressure - water potential Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday  相似文献   

13.
Steudle E 《Plant physiology》1980,66(6):1155-1163
Water-relation parameters of leaf mesophyll cells of the CAM plant Kalanchoë daigremontiana have been determined directly in cells of tissue slices using the pressure-probe technique. Turgor pressures measured in cells of the second to fourth layer from the cut surface showed an average of 1.82 ± 0.62 bar (mean ± sd; n = 157 cells). This was lower than expected from measurements of the osmotic pressure of the cell sap. The half-time (T1/2) for water-flux equilibration of individual cells was 2.5 to 8.8 seconds. This is the fastest T1/2 found so far for higher-plant cells. The calculated values of the hydraulic conductivity were in the range of 0.20 to 1.6 × 10−5 centimeters second−1 bar−1, with an average of (0.69 ± 0.46) × 10−5 centimeters second−1 bar−1 (mean ± sd; n = 8 cells). The T1/2 values of water exchange of individual cells are consistent with the overall rates of water-flux equilibration measured for tissue slices.The volumetric elastic moduli (∈) of individual cells were in the range 13 to 128 bar for turgor pressures between 0.0 and 3.4 bar; the average ∈ value was 42.4 ± 27.7 bar (mean ± sd; n = 21 cells). This ∈ value is similar to that observed for other higher-plant cells.The water-storage capacity of individual cells, calculated as Cc = V/(∈ + πi) (where V = cell volume and πi = internal osmotic pressure) was 9.1 × 10−9 cubic centimeters bar−1 per cell, and the capacity for the tissue was 2.2 × 10−2 cubic centimeters bar−1 gram−1 fresh weight. The significance of the water-relation parameters determined at the cellular level is discussed in terms of the water relations of whole leaves and the high water-use efficiency characteristic of CAM plants.  相似文献   

14.
Changes in glucose-6-P, fructose-6-P, fructose-1,6-diP, 6-phospho-gluconate, phosphoenolpyruvate, 3-phosphoglycerate, and pyruvate levels in the leaves of the Crassulacean plant Kalanchoë daigremontiana Hammet et Perrier were measured enzymically during transitions from CO2-free air to air, air to CO2-free air, and throughout the course of acid accumulation in darkness. The data are discussed in terms of the involvement of phosphoenolpyruvate carboxylase in malic acid synthesis and in terms of the regulation of the commencement of malic acid synthesis and accumulation through the effects of CO2 on storage carbohydrate mobilization and its termination through the effects of malic acid on phosphoenolpyruvate carboxylase activity.  相似文献   

15.
Tonoplast vesicles were prepared from leaf mesophyll homogenates of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie to study the effects of anions on ATP- and inorganic-pyrophosphate (PPi)-dependent H+ transport. In the presence of gramicidin, substrate hydrolysis by the tonoplast ATPase was characteristically stimulated by chloride and inhibited by nitrate, but was unaffected by malate and a wide range of other organic-acid anions; the PPiase was anion-insensitive. Malate was more effective than chloride both in stimulating ATP- and PPi-dependent vesicle acidification (measured as quinacrine-fluorescence quenching) and in dissipating a pre-existing inside-positive membrane potential (measured as oxonol-V-fluorescence quenching), indicating that malate was more readily transported across the tonoplast. Certain other four-carbon dicarboxylates also supported high rates of vesicle acidification, their order of effectiveness being fumarate malate -succinate > oxalacetate - tartrate; the five-carbon dicarboxylates 2-oxoglutarate and glutarate were also transported, although at lower rates. Experiments with non-naturally occurring anions indicated that the malate transporter was not stereospecific, but that it required the trans-carboxyl configuration for transport. Shorter-chain or longer-chain dicarboxylates were not transported, and neither were monocarboxylates, the amino-acid anions aspartate and glutamate, nor the tricarboxylate isocitrate. The non-permeant anions maleate and tartronate appeared to be competitive inhibitors of malate transport but did not affect chloride transport, indicating that malate and chloride influx at the tonoplast might be mediated by separate transporters.Abbreviations BTP 1,3-bis-[tris(hydroxymethyl)methylamino]-propane - CAM crassulacean acid metabolism - oxonol V bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethine oxonol - pH transmembrane pH difference - PPi inorganic pyrophosphate - PPiase inorganic pyrophosphatase - quinacrine 6-chloro-9-{[4-(diethylamino)-1-methylbutyl]amino}-2-methoxyacridine dihydrochloride - transmembrane electrical potential difference  相似文献   

16.
The regulation of Rubisco activity was investigated under high, constant photosynthetic photon flux density during the diurnal phases of Crassulacean acid metabolism in Kalanchoë daigremontiana Hamet et Perr. During phase I, a significant period of nocturnal, C4-mediated CO2 fixation was observed, with the generated malic acid being decarboxylated the following day (phase III). Two periods of daytime atmospheric CO2 fixation occurred at the beginning (phase II, C4–C3 carboxylation) and end (phase IV, C3–C4 carboxylation) of the day. During the 1st h of the photoperiod, when phosphoenolpyruvate carboxylase was still active, the highest rates of atmospheric CO2 uptake were observed, coincident with the lowest rates of electron transport and minimal Rubisco activity. Over the next 1 to 2 h of phase II, carbamylation increased rapidly during an initial period of decarboxylation. Maximal carbamylation (70%–80%) was reached 2 h into phase III and was maintained under conditions of elevated CO2 resulting from malic acid decarboxylation. Initial and total Rubisco activity increased throughout phase III, with maximal activity achieved 9 h into the photoperiod at the beginning of phase IV, as atmospheric CO2 uptake recommenced. We suggest that the increased enzyme activity supports assimilation under CO2-limited conditions at the start of phase IV. The data indicate that Rubisco activity is modulated in-line with intracellular CO2 supply during the daytime phases of Crassulacean acid metabolism.  相似文献   

17.
Summary An analysis was carried out of the mechanism of malic-acid efflux from vacuoles of mesophyll cells of the crassulacean acid metabolism (CAM) plantKalanchoë daigremontiana. Following its accumulation in the vacuole as a result of nocturnal CO2 fixation, the malic acid is passively transported back across the tonoplast in the subsequent light period and is decarboxylated in the cytoplasm. Malic-acid efflux was studied using leaf slices in solution or by following malic-acid utilization (deacidification) in leaves of intact plants. Samples of leaf-cell sap were taken at different times during the day-night rhythm to establish the relation between cell-sap pH and malate content. From the empirically determined pK values for malic acid in the cell sap, it was then possible to calculate the proportion of malate existing as the undissociated acid (H2mal0) and in the anionic forms (Hmal1– and mal2–) for all times during the CAM rhythm. In leaf-slice experiments it has been found that the rate of malic-acid efflux increases exponentially with the malic-acid content of the tissue. This is shown to be related to the increasing amounts of H2mal0 present at high malic-acid contents. At low malic-acid contents (<65 mol m–3), when H2mal0 is not present in significant amounts, efflux must be in the form of Hmal–1 and/or mal2–. At high malic-acid contents it is suggested that efflux occurs predominantly in the form of passive, noncatalyzed diffusion of H2mal0 across the tonoplast by a lipid-solution mechanism. This is supported by the fact that the slope of the curve relating efflux to H2mal0 concentration, when corrected for the presumed contributions from Hmal1– and mal2– transport and plotted on a log-log basis, approaches 1.0 at the highest malic-acid contents. Moreover, the permeability coefficient required to be consistent with such a mechanism is similar to that estimated from a Collander plot, using the partition coefficient of malic acid between ether and water. We suggest that may be important in determining the maximum amounts of malic acid that can be accumulated during the CAM rhythm.  相似文献   

18.
19.
Diurnal changes in levels of selected metabolites associated with glycolysis, the C3 cycle, C4-organic acids, and storage carbohydrates were analyzed in active Kalanchoë daigremontiana Crassulacean acid metabolism leaves. Three metabolic transition periods occurred each day. During the first two hours of light, nearly all of the metabolite pools underwent transient changes. Beginning at daylight, stomata opened transiently and closed again within 30 minutes; malate synthesis continued for about 1 hour into the light; C3 photosynthesis began within 30 minutes; and net quantities of starch and glucan began to accumulate after 2 hours, continuing linearly throughout the rest of the day.  相似文献   

20.
Pyruvate orthophosphate dikinase was detected from Kalanchoë daigremontiana Hamet. et. Perr., a succulent plant with crassulacean acid metabolism. Enzyme activity was similar to that of maize extracts. Two enzymes demonstrating pyruvate orthophosphate dikinase activity from K. daigremontiana and Zea mays were found to be partially identical from enzyme-inhibition and immunoprecipitin tests with maize enzyme antiserum. A time course study demonstrated that pyruvate orthophosphate dikinase activity in leaf extracts was dependent upon exposure of leaves to light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号