首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many proteins are regulated by a variety of post-translational modifications, and orchestration of these modifications is frequently required for full control of activity. Currently little is known about the combinatorial activity of different post-translational modifications. Here we show that extensive cross-talk exists between sumoylation and ubiquitination. We found that a subset of SUMO-2-conjugated proteins is subsequently ubiquitinated and degraded by the proteasome. In a screen for preferential SUMO-1 or SUMO-2 target proteins, we found that ubiquitin accumulated in purified SUMO-2 conjugates but not in SUMO-1 conjugates. Upon inhibition of the proteasome, the amount of ubiquitin in purified SUMO-2 conjugates increased. In addition, we found that endogenous SUMO-2/3 conjugates, but not endogenous SUMO-1 conjugates, accumulated in response to proteasome inhibitors. Quantitative proteomics experiments enabled the identification of 73 SUMO-2-conjugated proteins that accumulated in cells treated with proteasome inhibitors. Cross-talk between SUMO-2/3 and the ubiquitin-proteasome system controls many target proteins that regulate all aspects of nucleic acid metabolism. Surprisingly the relative abundance of 40 SUMO-2-conjugated proteins was reduced by proteasome inhibitors possibly because of a lack of recycled SUMO-2. We conclude that SUMO-2/3 conjugation and the ubiquitin-proteasome system are tightly integrated and act in a cooperative manner.  相似文献   

2.
The multifaceted functions of nitric oxide (NO) in the CNS are defined by the activity of neuronal NO synathase (nNOS). The activities of nNOS are modulated by posttranslational modifications, such as phosphorylation and ubiquitination, but whether it is modified by small ubiquitin-related modifier (SUMO) remains unknown. The aim of this study was to elucidate whether nNOS is posttranslationally modified by SUMO proteins. Bioinformatic analyses using SUMOplot and SUMOFI predicted that nNOS had potential SUMO modification sites. When HEK293T cells were transiently co-expressed with nNOS and SUMO-1, two bands corresponding to nNOS-SUMO-1 conjugates were detected. In addition, two nNOS-SUMO-1 conjugates were confirmed by an in vitro sumoylation assay using recombinant proteins. Furthermore, nNOS-SUMO-1 conjugates were identified by MALDI-QIT/TOF mass spectrometry. These findings indicate that nNOS is clearly defined as a SUMO-1 target protein both in vitro and at the cellular level. We next characterized specific enzymes in the nNOS-SUMO-1 conjugation cycle at the cellular level. SUMO-1 conjugation of nNOS depended on Ubc9 (E2). The interaction between nNOS and Ubc9 was facilitated by PIASxβ (E3). On the other hand, SUMO-1 was deconjugated from nNOS by SENP1 and SENP2. Overall, this study has newly identified that nNOS is posttranslationally modified by SUMO-1.  相似文献   

3.
Sumoylation is an important posttranslational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through overexpression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Overexpression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.Key words: sumoylation, mouse oocyte maturation, overexpression, Senp2, MII spindle  相似文献   

4.
Sumoylation is an important post-translational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through over-expression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Over-expression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.  相似文献   

5.
6.
7.
8.
9.
10.
The length and precise linkage of polyubiquitin chains is important for their biological activity. Although other ubiquitin-like proteins have the potential to form polymeric chains their identification in vivo is challenging and their functional role is unclear. Vertebrates express three small ubiquitin-like modifiers, SUMO-1, SUMO-2, and SUMO-3. Mature SUMO-2 and SUMO-3 are nearly identical and contain an internal consensus site for sumoylation that is missing in SUMO-1. Combining state-of-the-art mass spectrometry with an "in vitro to in vivo" strategy for post-translational modifications, we provide direct evidence that SUMO-1, SUMO-2, and SUMO-3 form mixed chains in cells via the internal consensus sites for sumoylation in SUMO-2 and SUMO-3. In vitro, the chain length of SUMO polymers could be influenced by changing the relative amounts of SUMO-1 and SUMO-2. The developed methodology is generic and can be adapted for the identification of other sumoylation sites in complex samples.  相似文献   

11.
12.
13.
Promyelocytic leukemia protein (PML) is the core component of PML-nuclear bodies (PML NBs). The small ubiquitin-like modifier (SUMO) system (and, in particular, SUMOylation of PML) is a critical component in the formation and regulation of PML NBs. SUMO protease SENP6 has been shown previously to be specific for SUMO-2/3-modified substrates and shows preference for SUMO polymers. Here, we further investigate the substrate specificity of SENP6 and show that it is also capable of cleaving mixed chains of SUMO-1 and SUMO-2/3. Depletion of SENP6 results in accumulation of endogenous SUMO-2/3 and SUMO-1 conjugates, and immunofluorescence analysis shows accumulation of SUMO and PML in an increased number of PML NBs. Although SENP6 depletion drastically increases the size of PML NBs, the organizational structure of the body is not affected. Mutation of the catalytic cysteine of SENP6 results in its accumulation in PML NBs, and biochemical analysis indicates that SUMO-modified PML is a substrate of SENP6.  相似文献   

14.
Small ubiquitin-related modifiers (SUMOs) regulate diverse cellular processes through their covalent attachment to target proteins. Vertebrates express three SUMO paralogs: SUMO-1, SUMO-2, and SUMO-3 (SUMO-2 and SUMO-3 are approximately 96% identical and referred to as SUMO-2/3). SUMO-1 and SUMO-2/3 are conjugated, at least in part, to unique subsets of proteins and thus regulate distinct cellular pathways. However, how different proteins are selectively modified by SUMO-1 and SUMO-2/3 is unknown. We demonstrate that BLM, the RecQ DNA helicase mutated in Bloom syndrome, is preferentially modified by SUMO-2/3 both in vitro and in vivo. Our findings indicate that non-covalent interactions between SUMO and BLM are required for modification at non-consensus sites and that preferential SUMO-2/3 modification is determined by preferential SUMO-2/3 binding. We also present evidence that sumoylation of a C-terminal fragment of HIPK2 is dependent on SUMO binding, indicating that non-covalent interactions between SUMO and target proteins provide a general mechanism for SUMO substrate selection and possible paralog-selective modification.  相似文献   

15.
Isik S  Sano K  Tsutsui K  Seki M  Enomoto T  Saitoh H  Tsutsui K 《FEBS letters》2003,546(2-3):374-378
DNA topoisomerase I and II have been shown to be modified with a ubiquitin-like protein SUMO in response to their specific inhibitors called 'poisons'. These drugs also damage DNA by stabilizing the enzyme-DNA cleavable complex and induce a degradation of the enzymes through the 26S proteasome system. A plausible link between sumoylation and degradation has not yet been elucidated. We demonstrate here that topoisomerase IIbeta, but not its isoform IIalpha, is selectively degraded through proteasome by exposure to the catalytic inhibitor ICRF-193 which does not damage DNA. The beta isoform immunoprecipitated from ICRF-treated cells was modified by multiple modifiers, SUMO-2/3, SUMO-1, and polyubiquitin. When the SUMO conjugating enzyme Ubc9 was conditionally knocked out, the ICRF-induced degradation of topoisomerase IIbeta did not occur, suggesting that the SUMO modification pathway is essential for the degradation.  相似文献   

16.
Ribosomal precursor particles are initially assembled in the nucleolus prior to their transfer to the nucleoplasm and export to the cytoplasm. In a screen to identify thermosensitive (ts) mutants defective in the export of pre-60S ribosomal subunit, we isolated the rix16-1 mutant. In this strain, nucleolar accumulation of the Rpl25-eGFP reporter was complemented by UBA2 (a subunit of the E1 sumoylation enzyme). Mutations in UBC9 (E2 enzyme), ULP1 [small-ubiquitin-related modifier (SUMO) isopeptidase] and SMT3 (SUMO-1) caused 60S export defects. A directed analysis of the SUMO proteome revealed that many ribosome biogenesis factors are sumoylated. Importantly, preribosomal particles along both the 60S and the 40S synthesis pathways were decorated with SUMO, showing its direct involvement. Consistent with this, early 60S assembly factors were genetically linked to SUMO conjugation. Notably, the SUMO deconjugating enzyme Ulp1, which localizes to the nuclear pore complex (NPC), was functionally linked to the 60S export factor Mtr2. Together our data suggest that sumoylation of preribosomal particles in the nucleus and subsequent desumoylation at the NPC is necessary for efficient ribosome biogenesis and export in eukaryotes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号