首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

2.
Apactin is an 80-kDa type I membrane glycoprotein derived from pro-Muclin, a precursor that also gives rise to the zymogen granule protein Muclin. Previous work showed that apactin is efficiently removed from the regulated secretory pathway and targeted to the actin-rich apical plasma membrane of the pancreatic acinar cell. The cytosolic tail (C-Tail) of apactin consists of 16 amino acids, has Thr casein kinase II and Ser protein kinase C phosphorylation sites, and a C-terminal PDZ-binding domain. Secretory stimulation of acinar cells causes a decrease in Thr phosphorylation and an increase in Ser phosphorylation of apactin. Fusion peptides of the C-Tail domain pulldown actin, ezrin, and EBP50/NHERF in a phosphorylation-dependent manner. HIV TAT-C-Tail fusion peptides were used as dominant negative constructs on living pancreatic cells to study effects on the actin cytoskeleton. During secretory stimulation, TAT-C-Tail-Thr/Asp phosphomimetic peptide caused an increase in actin-coated zymogen granules at the apical surface, while TAT-C-Tail-S/D phosphomimetic peptide caused a broadening of the actin cytoskeleton. These data indicate that stimulation-mediated Thr dephosphorylation allows decreased association of apactin with EBP50/NHERF and fosters actin remodeling to coat zymogen granules. Stimulation-mediated Ser phosphorylation increases apactin association with the actin cytoskeleton, maintaining tight bundling of actin microfilaments at the apical surface. Thus, apactin is involved in remodeling the apical cytoskeleton during regulated exocytosis in a manner controlled by phosphorylation of the apactin C-Tail.  相似文献   

3.
We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol, which selectively inhibits PA production by PLD, markedly decreased AVP-induced myogenesis. Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process. The expression of the PLD isoforms was differentially regulated during differentiation. AVP stimulation of myoblasts induced the rapid formation of stress fiber-like actin structures (SFLSs). 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent. Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP. In addition, AVP induced a PLD-dependent neosynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), which also was accumulated along actin fibers. These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation.  相似文献   

4.
The actin cytoskeleton is best known for its role during cellular morphogenesis. However, other evidence suggests that actin is also crucial for the organization and dynamics of membrane organelles such as endosomes and the Golgi complex. As in morphogenesis, the Rho family of small GTPases are key mediators of organelle actin-driven events, although it is unclear how these ubiquitously distributed proteins are activated to regulate actin dynamics in an organelle-specific manner. Here we show that the brain-specific Rho-binding protein Citron-N is enriched at, and associates with, the Golgi apparatus of hippocampal neurons in culture. Suppression of the whole protein or expression of a mutant form lacking the Rho-binding activity results in dispersion of the Golgi apparatus. In contrast, high intracellular levels induce localized accumulation of RhoA and filamentous actin, protecting the Golgi from the rupture normally produced by actin depolymerization. Biochemical and functional analyses indicate that Citron-N controls actin locally by assembling together the Rho effector ROCK-II and the actin-binding, neuron-specific, protein Profilin-IIa (PIIa). Together with recent data on endosomal dynamics, our results highlight the importance of organelle-specific Rho modulators for actin-dependent organelle organization and dynamics.  相似文献   

5.
Knowledge of the dynamics of actin-based structures is a major key to understanding how cells move and respond to their environment. The ability to reorganize actin filaments in a spatial and temporal manner to integrate extracellular signals is at the core of cell adhesion and cell migration. Several proteins have been described as regulators of actin polymerization: this review will focus on the role of WASP-interacting protein (WIP), an actin-binding protein that participates in actin polymerization regulation and signal transduction. WIP is widely expressed and interacts with Wiskott-Aldrich syndrome protein (WASP) (a hematopoietic-specific protein) and its more widely expressed homologue neural WASP (N-WASP), to regulate WASP/N-WASP function in Arp2/3-mediated actin polymerization. WIP also interacts with profilin, globular and filamentous actin (G- and F-actin, respectively) and stabilizes actin filaments. In vivo WIP participates in filopodia and lamellipodia formation, in T and B lymphocyte activation, in mast cell degranulation and signaling through the Fcepsilon receptor (FcepsilonR), in microbial motility and in Syk protein stability.  相似文献   

6.
Vacuolar H(+)-ATPase (V-ATPase) is a membrane-bound multisubunit enzyme complex composed of at least 14 different subunits. The complex regulates the physiological processes of a cell by controlling the acidic environment, which is necessary for certain activities and the interaction with the actin cytoskeleton through its B and C subunits in both humans and yeast. Arabidopsis V-ATPase has three B subunits (AtVAB1, AtVAB2, and AtVAB3), which share 97.27% sequence identity and have two potential actin-binding sites, indicating that these AtVABs may have crucial functions in actin cytoskeleton remodeling and plant cell development. However, their biochemical functions are poorly understood. In this study, we demonstrated that AtVABs bind to and co-localize with F-actin, bundle F-actin to form higher order structures, and stabilize actin filaments in vitro. In addition, the AtVABs also show different degrees of activities in capping the barbed ends but no nucleating activities, and these activities were not regulated by calcium. The functional similarity and differences of the AtVABs implied that they may play cooperative and distinct roles in Arabidopsis cells.  相似文献   

7.
Arp2p is an essential yeast actin-related protein. Disruption of the corresponding ARP2 gene leads to a terminal phenotype characterized by the presence of a single large bud. Thus, Arp2p may be important for a late stage of the cell cycle (Schwob, E., and R.P. Martin, 1992. Nature (Lond.). 355:179-182). We have localized Arp2p by indirect immunofluorescence. Specific peptide antibodies revealed punctate staining under the plasma membrane, which partially colocalizes with actin. Temperature-sensitive arp2 mutations were created by PCR mutagenesis and selected by an ade2/SUP11 sectoring screen. One temperature-sensitive mutant that was characterized, arp2-H330L, was osmosensitive and had an altered actin cytoskeleton at a nonpermissive temperature, suggesting a role of Arp2p in the actin cytoskeleton. Random budding patterns were observed in both haploid and diploid arp2- H330L mutant cells. Endocytosis, as judged by Lucifer yellow uptake, was severely reduced in the mutant, at all temperatures. In addition, genetic interaction was observed between temperature-sensitive alleles arp2-H330L and cdc10-1. CDC10 is a gene encoding a neck filament- associated protein that is necessary for polarized growth and cytokinesis. Overall, the immunolocalization, mutant phenotypes, and genetic interaction suggest that the Arp2 protein is an essential component of the actin cytoskeleton that is involved in membrane growth and polarity, as well as in endocytosis.  相似文献   

8.
9.
Rho family small GTPases are key regulators of the actin cytoskeleton in various cell types. The Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been recently identified as new members of the Rho family of GTPases, and expression of Rnd1 or Rnd3 in fibroblasts causes the disassembly of actin stress fibers and the retraction of the cell body to produce extensively branching cellular processes. Here we have performed a yeast two-hybrid screening by using Rnd1 as bait and identified a novel protein that specifically binds to Rnd GTPases. We named this protein Socius. Socius directly binds to Rnd GTPases through its COOH-terminal region. When transfected into COS-7 cells, Socius is translocated to the cell periphery in response to Rnd1 and Rnd3 and colocalized with the GTPases. While expression of wild-type Socius in Swiss 3T3 fibroblasts has little effect on the actin cytoskeleton, the expression of a membrane-targeted form of Socius, containing a COOH-terminal farnesylation motif (Socius-CAAX), induces a dramatic loss of stress fibers. The inhibitory effect of Socius-CAAX on stress fiber formation is enhanced by truncation of its NH(2) terminus. On the other hand, the expression of Socius-CAAX or its NH(2) terminus-truncated form suppresses the Rnd-induced retraction of the cell body and the production of extensively branching cellular processes, although the disassembly of stress fibers is observed. We propose that Socius participates in the Rnd GTPase-induced signal transduction pathways, leading to reorganization of the actin cytoskeleton.  相似文献   

10.
Actin binding protein from human blood platelets is shown to exist in the resting platelet as a phosphorylated protein and contains two residues of phosphate per 260,000 kd. Removal of one-half of these residues with E. coli alkaline phosphatase results in the loss of its ability to crosslink F-actin into a low speed sedimentable complex (its cytoskeleton) and to bind to an F-actin affinity column. Thus, phosphorylation-dephosphorylation of ABP may be an important regulatory mechanism by which the platelet regulates its shape via its cytoskeletal structure.  相似文献   

11.
12.
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.  相似文献   

13.
14.
CKIP-1 is a pleckstrin homology domain-containing protein that interacts with protein kinase CK2. To elucidate the functions of CKIP-1, we generated human osteosarcoma cell lines with tetracycline-regulated expression of Flag-CKIP-1. Flag-CKIP-1 expression resulted in distinct changes in cellular morphology. Therefore, we examined the actin profile by immunofluorescence, quantitative measurement of phalloidin binding, and immunoblot analysis. These studies demonstrate that Flag-CKIP-1 expression resulted in increases in F-actin staining and protein levels of beta-actin. To elucidate the mechanisms behind the observed phenotype, we utilized tandem affinity purification to isolate CKIP-1 interacting proteins. Mass spectrometry analysis led to the identification of the actin capping protein subunits, CPalpha and CPbeta, as novel CKIP-1 interaction partners. Interactions were confirmed by coimmunoprecipitation and by colocalization. Furthermore, we demonstrate that Ser9 of CPalpha is phosphorylated by protein kinase CK2 in vitro, that CPalpha is phosphorylated in vivo, and that treatment with a CK2-specific inhibitor results in a decrease in CPalpha phosphorylation. Finally, we demonstrate that CKIP-1 and CK2 inhibit the activity of actin capping protein at the barbed ends of actin filaments. Overall, our results are consistent with CKIP-1 playing a role in the regulation of the actin cytoskeleton through its interactions with actin capping protein.  相似文献   

15.
The myotonic dystrophy kinase-related kinases RhoA binding kinase and myotonic dystrophy kinase-related Cdc42 binding kinase (MRCK) are effectors of RhoA and Cdc42, respectively, for actin reorganization. Using substrate screening in various tissues, we uncovered two major substrates, p130 and p85, for MRCKalpha-kinase. p130 is identified as myosin binding subunit p130, whereas p85 is a novel related protein. p85 contains N-terminal ankyrin repeats, an alpha-helical C terminus with leucine repeats, and a centrally located conserved motif with the MRCKalpha-kinase phosphorylation site. Like MBS130, p85 is specifically associated with protein phosphatase 1delta (PP1delta), and this requires the N terminus, including the ankyrin repeats. This association is required for the regulation of both the catalytic activities and the assembly of actin cytoskeleton. The N terminus, in association with PP1delta, is essential for actin depolymerization, whereas the C terminus antagonizes this action. The C-terminal effects consist of two independent events that involved both the conserved phosphorylation inhibitory motif and the alpha-helical leucine repeats. The former was able to interact with PP1delta only in the phosphorylated state and result in inactivation of PP1delta activity. This provides further evidence that phosphorylation of a myosin binding subunit protein by specific kinases confers conformational changes in a highly conserved region that plays an essential role in the regulation of its catalytic subunit activities.  相似文献   

16.
The organization of actin microfilaments was studied by immunofluorescence in protoplasts isolated from sunflower hypocotyls and cultured in an agarose matrix. Removal of the cell wall completely disrupted the actin cytoskeleton, which became progressively reorganized into cortical microfilament arrays and actin cables during protoplast culture. Treatment of protoplasts with arginine-glycine-aspartic acid (Arg-Gly-Asp) motif-containing peptides, to inhibit putative cell contacts with the agarose matrix, strongly affected this repair process: microfilament elongation and cable formation were inhibited and the connectivity between the cortical network and the perinuclear basket was lost. Furthermore, embryoid formation induced by agarose embedding was reduced. Similar effects were observed with a short treatment with latrunculin B, known to disrupt actin microfilaments. These results indicate that the actin network is involved in the signalling process that leads to polarity acquisition and embryoid determination in agarose-embedded protoplasts.  相似文献   

17.
The conserved FER-CIP4 homology (FCH) domain is found in the pombe Cdc15 homology (PCH) protein family members, including formin-binding protein 17 (FBP17). However, the amino acid sequence homology extends beyond the FCH domain. We have termed this region the extended FC (EFC) domain. We found that FBP17 coordinated membrane deformation with actin cytoskeleton reorganization during endocytosis. The EFC domains of FBP17, CIP4, and other PCH protein family members show weak homology to the Bin-amphiphysin-Rvs (BAR) domain. The EFC domains bound strongly to phosphatidylserine and phosphatidylinositol 4,5-bisphosphate and deformed the plasma membrane and liposomes into narrow tubules. Most PCH proteins possess an SH3 domain that is known to bind to dynamin and that recruited and activated neural Wiskott-Aldrich syndrome protein (N-WASP) at the plasma membrane. FBP17 and/or CIP4 contributed to the formation of the protein complex, including N-WASP and dynamin-2, in the early stage of endocytosis. Furthermore, knockdown of endogenous FBP17 and CIP4 impaired endocytosis. Our data indicate that PCH protein family members couple membrane deformation to actin cytoskeleton reorganization in various cellular processes.  相似文献   

18.
The ADP-ribosylation factor (ARF) 6 small GTPase regulates vesicle trafficking and cytoskeletal actin reorganization. The GTPase-activating proteins (GAPs) catalyze the formation of inactive ARF6GDP. Centaurin-alpha1 contains an ARF GAP and two pleckstrin homology (PH) domains, which bind the second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3). Here, we show that centaurin-alpha1 specifically inhibits in vivo GTP loading of ARF6 and redistribution of ARF6 from the endosomal compartment to the plasma membrane, which are indicative of its activation. Centaurin-alpha1 also inhibited cortical actin formation in a PIP3-dependent manner. Moreover, the constitutively active mutant of ARF6, but not that of ARF1, reverses the inhibition of cortical actin formation by centaurin-alpha1. An artificially plasma membrane-targeted centaurin-alpha1 bypasses the requirement of PIP3 for its involvement in ARF6 inactivation, suggesting that PIP3 is required for recruitment of centaurin-alpha1 to the plasma membrane but not for its activity. Together, these data suggest that centaurin-alpha1 negatively regulates ARF6 activity by functioning as an in vivo PIP3-dependent ARF6 GAP.  相似文献   

19.
Here we identified two novel proteins denoted EH domain protein 2 (EHD2) and EHD2-binding protein 1 (EHBP1) that link clathrin-mediated endocytosis to the actin cytoskeleton. EHD2 contains an N-terminal P-loop and a C-terminal EH domain that interacts with NPF repeats in EHBP1. Disruption of EHD2 or EHBP1 function by small interfering RNA-mediated gene silencing inhibits endocytosis of transferrin into EEA1-positive endosomes as well as GLUT4 endocytosis into cultured adipocytes. EHD2 localizes with cortical actin filaments, whereas EHBP1 contains a putative actin-binding calponin homology domain. High expression of EHD2 or EHBP1 in intact cells mediates extensive actin reorganization. Thus EHD2 appears to connect endocytosis to the actin cytoskeleton through interactions of its N-terminal domain with membranes and its C-terminal EH domain with the novel EHBP1 protein.  相似文献   

20.

Background  

Cardiac contractility is regulated by dynamic phosphorylation of sarcomeric proteins by kinases such as cAMP-activated protein kinase A (PKA). Efficient phosphorylation requires that PKA be anchored close to its targets by A-kinase anchoring proteins (AKAPs). Cardiac Myosin Binding Protein-C (cMyBPC) and cardiac troponin I (cTNI) are hypertrophic cardiomyopathy (HCM)-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号