首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete solubilization of both the A and B forms of human brain monoamine oxidase (MAO) occurred when crude mitochondria were incubated in the presence of 50 mM octylglucoside (OG). Upon removal of this nonionic detergent by dialysis, approximately 100% of the starting activity was present in the dialysate. The effects of solubilization were examined by comparison of several properties of the membrane-bound and OG-treated oxidases. The percentage inhibition of phenylethylamine (PEA) and the 5-hydroxytryptamine (5-HT) deamination by deprenyl and clorgyline were identical. The Km values obtained for the deamination of PEA, a B-selective substrate, 5-HT, an A-selective substrate, and tyramine (TYR), a nonselective substrate, were also comparable. OG was found to inhibit type A (I50 = 8.1 mM) and B (I50 = 4.7 mM) MAO activities at concentrations at least 10-fold below those used to solubilize the oxidases. Kinetic studies revealed that OG was an apparent competitive inhibitor of PEA deamination whereas OG produced a mixed-type pattern of inhibition when 5-HT was the variable substrate. Inhibition of TYR deamination by either the A or B form of MAO produced a mixed pattern of inhibition. The findings herein suggest that solubilization of the A and B forms of MAO by OG does not significantly alter the substrate and inhibitor specificity of the oxidases following removal of detergent. However, in the presence of concentrations of OG 50 times less than the critical micellar concentration of this detergent, marked inhibition of deamination by both forms of human brain MAO is observed. Accordingly, the usefulness of OG is limited to situations where the detergent is completely removed before quantitation of MAO activity.  相似文献   

2.
Monoamine oxidase specific activities against PEA and 5-HT have been measured in mitochondria isolated from early embryos of Bufo bufo. During the early development up to the neural fold stage, MAO activity undergoes a continuous decrease that is more evident when PEA is used as the substrate. The inhibition patterns of deprenyl and clorgyline demonstrate that, at the neural fold stage, both type A and B MAO are present. Both in eggs and embryos MAO type A activity appears slightly more sensitive to the inhibitory effect of various concentrations (0.1-2 M) of the denaturing agent urea.  相似文献   

3.
Abstract: Studies were designed to evaluate specificity of the transmitter amines serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA), as well as the trace amines p -tyramine ( p -TA) and β -phenylethylamine (PEA) for types A and B monoamine oxidase (MAO) in rat striatum. 5-HT was found to be a specific substrate for the type A enzyme. However, the specificity of PEA for the type B enzyme was found to be concentration-dependent. When low concentrations of PEA and 5-HT were used to measure type B and type A activities, respectively, both clorgyline and deprenyl were highly selective for the sensitive form of MAO in vivo. However, as the concentration of PEA was increased, the type B inhibitor deprenyl became less effective in preventing deamination of PEA. Conversely, the type A inhibitor clorgyline became more effective in this regard. Kinetic analysis following selective in vivo inhibition showed PEA deamination by both forms of MAO with a 13-fold greater affinity for the type B enzyme. In vivo dose-response curves obtained with the common substrates DA and p -TA showed approximately 20% deamination by the B enzyme. Kinetic values for DA and p -TA deamination in in vivo -treated tissue possessing only type A or type B MAO activity, revealed a 2.5-fold greater affinity for the type A enzyme. These studies show the importance of concentration on substrate specificity in striatal tissue. The results obtained characterize the common substrate properties of DA and p -TA as well as of PEA in rat striatum. In addition, the presence of regional specificity for 5-HT deamination by only type A MAO is demonstrated.  相似文献   

4.
Abstract— The possible existence of type C MAO, distinct from type A and type B, in circumventricular structures of rat brain was examined by histological studies on the inhibitory effects of clorgyline. a preferential type A MAO inhibitor and deprenyl, a preferential type B inhibitor, on enzyme. Brain slices were preincubated with the inhibitors and then incubated with 5-HT, the substrate for type A MAO, and stained for MAO activity. Deposits of the product formazan were detected in circumventricular structures of slices of brain preincubated with clorgyline and deprenyl at concentrations of 10-7–10-4m at room temperature for 5 min. When the slices were preincubated with either of these inhibitors at room temperature for 60 min, strong activity was observed in this region, whereas when they were preincubated with either 10-5m -clorgyline or 10-5m -deprenyl for 20 and 30 min at 37°C, no MAO activity was seen in any region of the brain. Thus, at the higher preincubation temperature, lower concentrations of each inhibitor and a shorter preincubation period were required for inhibition of the enzyme. Preincubation for 60 min at 37°C with a combination of 10-7m -clorgyline and 10-8m -deprenyl did not inhibit the enzyme in the circumventricular region completely, but at the same temperature, concentrations of 10-7m of both inhibitors inhibited the enzyme completely in 10min, Thus the effects of the inhibitors are synergistic. These results indicate that the inhibitory effects of the two inhibitors on the enzyme in circumventricular structures of the brain is time- and temperature-dependent. Moreover, the activity seems to be sensitive to deprenyl even when 5-HT is used as substrate. The results do not support the idea of the existence of type C MAO, distinct from type A and type B MAO.  相似文献   

5.
β-Phenylethylamine (PEA) was characterized as substrate for both type A and type B monoamine oxidase (MAO) in rat brain mitochondria at different substrate concentrations and at different pHs of the reaction media. The experiments on sensitivity to clorygline and deprenyl showed that the inhibition patterns with PEA as substrate differed markedly at different substrate concentrations: at 10 μM, PEA acted as a specific substrate for type B MAO, but at 50–1000 μM it became a common substrate for both types of MAO. The inhibition patterns were also affected markedly by a small change in pH of the reaction medium, especially when PEA concentrations were 50 and 100 μM: the change in pH from 7.2 to 7.8 resulted in the incresse in the proportion of type A MAO by 20–30 per cent. To investigate the mechanisms of such changes in substrate specificity of PEA, kinetic analyses were carried out at pH 7.2 and 7.8 with the uninhibited, the clorgyline-treated (type B) and the deprenyl-treated (type A) enzyme. The Lineweaver-Burk plots for the uninhibited MAO showed strong substrate inhibition for both pHs, which is more marked at pH 7.8 than at pH 7.2. Pretreatment of the enzyme with 10?7 M clorgyline resulted in generally similar Km values for PEA to those of the uninhibited enzyme, and the substrate inhibition at pH 7.8 was also stronger than that at pH 7.2. After pretreatment with 10?7 M deprenyl, the Km values were higher and the Vmax values were lower than those of the uninhibited or the clorgyline-treated enzyme; there was no or only slight substrate inhibition in these curves. These results suggest that the remarkable changes in substrate specificity observed at different PEA concentrations and at different pHs may be due to the strong substrate inhibition of type B MAO.  相似文献   

6.
Abstract

The substrate- and inhibitor-related characteristics of monoamine oxidase (MAO) were studied for catfish brain and liver. The kinetic constants for MAO in both tissues were determined using 5-hydroxytryptamine (5-HT), tyramine and β-phenylethylamine (PEA) as substrates. For both tissues, the Vmax values were highest with 5-HT and lowest with PEA. The Km value for the brain was highest with 5-HT, followed by tyramine and PEA; but for the liver its value was highest with PEA, followed by 5-HT and tyramine, although all values were in the same order of magnitude. The inhibition of MAO by clorgyline and deprenyl by use of 5-HT, tyramine and PEA as substrates showed that the MAO-A inhibitor clorgyline was more effective than the MAO-B inhibitor deprenyl for both catfish tissues; a single form was present since inhibition by clorgyline or deprenyl with 1000 μM PEA showed single phase sigmoid curves. It is concluded that catfish brain and liver contain a single form of MAO, relatively similar to mammalian MAO-A.  相似文献   

7.
Abstract: β-Phenylethylamine (PEA) was characterized as a substrate for type A and type B monoamine oxidase (MAO) in brain and liver mitochondria of eight species at different substrate concentrations. In all species, at 10.0 μM, PEA was almost specific for type B MAO. At 1000 μM, however, the amine was common for both types of MAO in rat brain and liver, human brain and liver, mouse brain, guinea pig brain and liver, and bovine brain, while it was specific for type B MAO in mouse liver, rabbit brain and liver, bovine liver, pig brain and liver, and chicken brain and liver. From the present study, when PEA is used as a type B substrate, it is recommended that the substrate concentration should be sufficiently low to avoid the effects of species and tissue differences.  相似文献   

8.
1. Mitochondrial MAO specific activity was measured in eggs and early embryos of the teleostean fish Esox lucius using tryptamine, 5-hydroxytryptamine (5-HT) and phenylethylamine (PEA) as substrates. 2. Tryptamine is the most readily deaminated substrate in mitochondria isolated from unfertilized eggs and embryos at the stages of cleavage, blastula and gastrula. 3. Monoamine oxidase activity gradually decreases during development and at the gastrula stage it is respectively 80% (tryptamine), 70% (5-HT) and 50% (PEA) of that found in the egg using the corresponding substrate. 4. The inhibition of egg MAO activity by clorgyline and deprenyl measured in E. lucius eggs using tryptamine as substrate, indicates the presence of a single form of MAO not corresponding to the MAO A and MAO B described in terrestrial vertebrates.  相似文献   

9.
The denaturating effects of urea on clorgyline-produced inhibition of serotonin and tyramine deamination and deprenyl-produced inhibition of beta-phenylethylamine and tyramine oxidation were studied. It was shown that after preincubation of mitochondria with 1 and 2 M urea the intensity of inhibition by clorgyline and deprenyl of oxidation of these amines was not changed. With urea concentration of 3 and 4 M the inhibitory effect of clorgyline on deamination of serotonin and tyramine was increased, while that of deprenyl on oxidation of beta-phenylethylamine and tyramine was decreased. As a result of mitochondria treatment with 3 and 4 M urea the selectivity in inhibition by clorgyline of serotonin and tyramine deamination typical for intact mitochondria was reduced in the case of 3 M urea and eliminated in the case of 4 M urea. In intact mitochondria the intensity of inhibition by clorgyline of tyramine deamination in the presence of benzyl alcohol (competitive reversible MAO inhibitor) was increased, but the additive effect was not achieved. However, after preincubation of mitochondria with 3 M urea the summation of the inhibitory effects of clorgyline and benzyl alcohol was observed. The data obtained provide further evidence for the important role of spatial configuration of the monoamine oxidase molecule; the data are discussed in terms of arrangement on the protein molecule surface of the essential groups involved in the binding and deamination of amines for the inhibitory effects of clorgyline and deprenyl.  相似文献   

10.
Cultured C6 rat glial cells preferentially deaminated 5-hydroxytryptamine, tryptamine, dopamine and tyramine in comparison to phenylethylamine and benzylamine. Deamination of all substrates was uniformly sensitive to inhibition by clorgyline and relatively insensitive to deprenyl. These data together with the observations of simple sigmoid curves for the inhibition of tyramine deamination by both inhibitors suggest that C6 glial cells contain mainly monoamine oxidase type A, which previously had been suggested to be primarily an intraneuronal MAO type. As these findings are in agreement with other studies of brain MA0 activity in mitochondria separated from neuronal vs glial cell preparations, they help explain why MA0 activity measured with some substrates may be little affected by lesions or by drugs producing nerve ending degeneration.  相似文献   

11.
Avital Schurr 《Life sciences》1982,30(13):1059-1063
That the enzyme, monoamine oxidase (E.C. 1.4.3.4. amine: O2 oxidoreductase, MAO) exists in multiple forms was first suggested by Johnston (1) who studied the effects of the irreversible inhibitor clorgyline on MAO. It has been proposed that MAO can be classified into two types, A and B, according to their inhibitor sensitivity and substrate specificity. Type A MAO was found to be solely responsible for the deamination of 5-hydroxytryptamine (5-HT) and shows high sensitivity to clorgyline, while type B MAO metabolizes 2-phenethylamine (PEA) and benzylamine (BA) and is less sensitive to clorgyline. Subsequently, it was shown that type B MAO is highly sensitive to the irreversible inhibitor deprenyl (2).Recently, the “multiple forms” concept has been questioned (3–5) mainly because of increasing evidence which is contradictory to some earlier findings. As an alternative, another hypothesis was put forward insinuating that MAO is an enzyme with multiple binding sites but only one molecular entity (3,4,6,7). This account will focus on some experimental findings accumulated mainly since 1978 and which, although equivocal, strongly support the “one molecular entity” hypothesis of MAO.  相似文献   

12.
D J Edwards  S S Chang 《Life sciences》1975,17(7):1127-1134
Rabbit platelets were found to contain both types A and B MAO activities. The specific enzymatic activity of rabbit platelet MAO was higher for the substrate serotonin than for phenylethylamine. The Km's for rabbit platelet MAO indicated that the MAO-B enzyme was similar to human platelet MAO and that both MAO-A and MAO-B enzymes in the rabbit platelet are similar to the corresponding forms in the rabbit brain. The drugs clorgyline and deprenyl confirmed the existence of types A and B MAO in the platelet and furthermore indicated that the type A form accounted for approximately 90% of the total enzymatic activity. Amitriptyline at low (micromolar) concentrations selectively inhibited MAO-B activity in both rabbit platelets and brain.  相似文献   

13.
The kinetic properties of type A and type B monoamine oxidase (MAO) were examined in guinea pig striatum, rat striatum, and autopsied human caudate nucleus using 3,4-dihydroxyphenylethylamine (dopamine, DA) as the substrate. MAO isozyme ratio in guinea pig striatum (28% type A/72% type B) was similar to that in human caudate nucleus (25% type A/75% type B) but different from that in rat striatum (76% type A/24% type B). Additional similarities between guinea pig striatum and human caudate nucleus were demonstrated for the affinity constants (Km) of each MAO) isozyme toward DA. Endogenous concentrations of DA, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were also measured in guinea pig and rat striatum following selective type A (clorgyline-treated) and type B (deprenyl-treated) MAO inhibition. In guinea pig, DA metabolism was equally but only partially affected by clorgyline or deprenyl alone. Combined treatment with clorgyline and deprenyl was required for maximal alterations in DA metabolism. By contrast, DA metabolism in rat striatum was extensively altered by clorgyline but unaffected by deprenyl alone. Finally, the deamination of DA in synaptosomes from guinea pig striatum was examined following selective MAO isozyme inhibition. Neither clorgyline nor deprenyl alone reduced synaptosomal DA deamination. However, clorgyline and deprenyl together reduced DA deamination by 94%. These results suggest that the isozyme localization and/or isozyme affinity for DA, rather than the absolute isozyme content, determines the relative importance of type A and type B MAO in synaptic DA deamination. Moreover, based on the enzyme kinetic properties of each MAO isozyme, guinea pig striatum may serve as a suitable model of human DA deamination.  相似文献   

14.
1. Monoamine oxidase activity has been studied in hepatopancreas of Octopus vulgaris using 5-HT and PEA as substrates.2. Time courses of MAO activity against 5-HT and PEA show that the enzyme has higher affinity for PEA than for 5-HT.3. MAO activity against 5-HT appears more sensitive than MAO activity against PEA, to variations of the temperature (range 17–67°C).4. The inhibition curves obtained with clorgyline and deprenyl indicate that MAO activity is due to a single form of the enzyme, not corresponding to type A and type B MAO.5. Semicarbazide 10−4 M does not affect the deamination of 5-HT and PEA, demonstrating that a semicarbazide-sensitive amine oxidase is not involved in this process.  相似文献   

15.
16.
Monoamines are able to increase the thyroid iodine organification in vitro. A predominance of the A form of monoamine oxidase (MAO) has been previously demonstrated to exist in bovine thyroid tissue. In the present study we have investigated the form of MAO that could be involved in the iodotyrosine formation induced by tyramine, 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) in a bovine thyroid subcellular fraction. The relative capacity of these monoamines to generate H2O2 and to incorporate iodine into tyrosine has also been studied. The MAO A inhibitor clorgyline (10(-9) M) produced a strong inhibition on the iodotyrosine formation induced by tyramine, 5-HT and PEA. In contrast, only a slight reduction was observed with deprenyl as MAO B inhibitor. Among the three monoamines, tyramine produced the highest H2O2 generation and iodotyrosine formation. The lowest Km value obtained was for 5-HT and the highest for PEA. Regarding the Vmax, the lowest value was for 5-HT and the highest for tyramine. The amount of iodine incorporated to tyrosine was not equivalent to the H2O2 generated by the monoamines nor to that exogenously added. Our results indicate that in bovine thyroid tissue mainly the A form of MAO is involved in the monoamine metabolism.  相似文献   

17.
Studies using clorgyline, deprenyl and semicarbazide as inhibitors showed that carp heart homogenate contained a new type of monoamine oxidase (MAO) and a clorgyline- and deprenyl-resistant amine oxidase (CRAO). The deamination of monoamines by carp heart MAO proceeded in two steps by a double-displacement (ping-pong) mechanism. The Km values of the MAO for oxygen (K0 values) with tyramine, 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) as substrates were identical (59 microM).  相似文献   

18.
Monoamine oxidase (MAO) activity in the liver and brain of the pacu, Piaractus mesopotamicus was determined using a fluorescence assay with kynuramine as substrate. Apparent Michaelis constant values (20·33 μM for liver and 25·85 μM for brain) were similar in these tissues, but in terms of tissue protein MAO activity from liver was 4·5 times higher than from brain. The greater inhibitory effects of clorgyline than of deprenyl on MAO activity from liver and brain of this species suggest that pacu's MAO is a type A-like enzyme.  相似文献   

19.
The characteristics of mitochondrial monoamine oxidase (MAO) in carp liver were studied with MAO inhibitors and substrates. This enzyme was thermolabile, but was stabilized in the presence of bovine serum albumin. With clorgyline and deprenyl, single-sigmoidal curves for inhibition of the activity towards tyramine or 5-hydroxytryptamine were obtained; the sensitivities to the two inhibitors were identical. The activity towards β-phenylethylamine was not completely inhibited by clorgyline or deprenyl, but the remaining activity was inhibited by semicarbazide and the inhibition curves by either clorgyline or deprenyl and semicarbazide were also identical to the curves with the other two substrates. These results suggest that carp liver mitochondria contain “classical” MAO and a clorgyline- and deprenyl-resistant amine oxidase and that the classical MAO does not seem to be MAO-A or MAO-B, which are present in mitochondria of most mammalian tissues.  相似文献   

20.
The characterization of monoamine oxidase (MAO) activity in lymphocytes and granulocytes was studied by using cells prepared from human blood. The specific activities of the enzyme towards beta-phenylethylamine (PEA), benzylamine (Bz), tyramine (TYR) and 5-hydroxytryptamine (5-HT) were found to be 5-times higher in lymphocytes than in granulocytes. The absence of the semicarbazide-sensitive amine oxidase (SSAO) was confirmed by the lack of effect of semicarbazide on the benzylamine oxidation. The presence of MAO-B was corroborated by the inhibition of PEA oxidation with nanomolar deprenyl concentrations and by inhibition of TYR oxidation with high clorgyline concentrations, as well as by the simple sigmoid curve obtained in both cases. These results, together with the substrate preferences, suggest that the MAO activity of human granulocytes and lymphocytes is predominantly of the B form. For each fraction the kinetic constants were determined towards PEA, TYR and Bz as substrates. The Km values were similar for both cellular samples, whereas the Vmax values were higher in lymphocytes than in granulocytes. MAO-B was titrated with [3H]pargyline in order to find out the number of active sites. The corresponding molecular concentration, Kcat values and turnover number showed the presence of related enzymes in human granulocytes and lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号