首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two endoglucanases of Trichoderma viride, endoI and endoIV, were assayed for their activity toward alkali-extracted apple xyloglucans. EndoIV was shown to have a 60-fold higher activity toward xyloglucan than endoI, whereas carboxymethyl cellulose and crystalline cellulose were better substrates for the latter. The enzymic degradation of cellulose embedded in the complex cell-wall matrix of apple fruit tissue has been studied using cellobiohydrolase (CBH) and these two different endoglucanases. A high-performance liquid chromatographic method (Aminex HPX-22H) was used to monitor the release of cellobiose and oligomeric xyloglucan fragments. Synergistic action between CBH and endoglucanases on cell-wall-embedded cellulose was, with respect to their optimal ratio, slightly different from that reported for crystalline cellulose. The combination of endoIV and CBH solubilized twice as much cellobiose compared to a combination of endoI and CBH. Apparently, the concomitant removal of the xyloglucan coating from cellulose microfibrils by endoIV is essential for an efficient degradation of cellulose in a complex matrix. Cellulose degradation slightly enhanced the solubilization of xyloglucans. These results indicate optimal degradation of cell-wall-embedded cellulose by a three-enzyme system consisting of an endoglucanase with high affinity toward cellulose (endoI), a xyloglucanase (endoIV), and CBH.  相似文献   

2.
In order to study the IAA-induced modifications of the cellwall of azuki bean (Vigna angularis Ohwi et Ohashi cv. Takara)epicotyl segments, the xyloglucans were subfractionated intotwo components, i.e., 4K-U and 24K xyloglucans, which were obtainedby extraction with 4% KOH solution containing 8 M urea and 24%KOH solution, respectively. The weight-average molecular weightsof 4K-U and 24K xyloglucans were estimated to be 40 x 104 and106 x 104, respectively. Complete acid hydrolysis of 4K-U and24K xyloglucans gave glucose, xylose, galactose and fucose inmole % 48.3 : 33.5 : 13.8 : 4.4 and 45.3 : 30.9 : 19.6 : 4.3,respectively. Treatment of epicotyl segments with IAA (0.1 mM) caused a decreasein the amount of 24K xyloglucans and an increase in 4K-U xyloglucans,whereas the total amount of the two xyloglucans remained constant.Furthermore, IAA treatment caused a decrease in the molecularweight of 24K xyloglucans from 106 x 104 to 78 x 104 withoutcausing changes in their sugar compositions. With 4K-U xyloglucans,IAA caused an increase in the mole % of xylose and a decreasein the mole % of galactose and fucose. 1 This paper is dedicated to the late Professor Joji Ashida. (Received November 26, 1982; Accepted February 7, 1983)  相似文献   

3.
Protein engineering to functionalize the self‐assembling enamel matrix protein amelogenin with a cellulose binding domain (CBD) is used. The purpose is to examine the binding of the engineered protein, rh174CBD, to cellulose materials, and the possibility to immobilize self‐assembled amelogenin nanospheres on cellulose. rh174CBD assembled to nanospheres ≈35 nm in hydrodynamic diameter, very similar in size to wild type amelogenin (rh174). Uniform particles are formed at pH 10 for both rh174 and rh174CBD, but only rh174CBD nanospheres showes significant binding to cellulose (Avicel). Cellulose binding of rh174CBD is promoted when the protein is self‐assembled to nanospheres, compared to being in a monomeric form, suggesting a synergistic effect of the multiple CBDs on the nanospheres. The amount of bound rh174CBD nanospheres reached ≈15 mg/g Avicel, which corresponds to 4.2 to 6.3 × 10?7 mole/m2. By mixing rh174 and rh174CBD, and then inducing self‐assembly, composite nanospheres with a high degree of cellulose binding can be formed, despite a lower proportion of rh174CBD. This demonstrates that amelogenin variants like rh174 can be incorporated into the nanospheres, and still retain most of the binding to cellulose. Engineered amelogenin nanoparticles can thus be utilized to construct a range of new cellulose based hybrid materials, e.g. for wound treatment.  相似文献   

4.
Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir''s one binding site model with K d and A max values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir''s one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area.  相似文献   

5.
Thermomonospora fusca E4 is an unusual 90.4-kDa endocellulase comprised of a catalytic domain (CD), an internal family IIIc cellulose binding domain (CBD), a fibronectinlike domain, and a family II CBD. Constructs containing the CD alone (E4-51), the CD plus the family IIIc CBD (E4-68), and the CD plus the fibronectinlike domain plus the family II CBD (E4-74) were made by using recombinant DNA techniques. The activities of each purified protein on bacterial microcrystalline cellulose (BMCC), filter paper, swollen cellulose, and carboxymethyl cellulose were measured. Only the whole enzyme, E4-90, could reach the target digestion of 4.5% on filter paper. Removal of the internal family IIIc CBD (E4-51 and E4-74) decreased activity markedly on every substrate. E4-74 did bind to BMCC but had almost no hydrolytic activity, while E4-68 retained 32% of the activity on BMCC even though it did not bind. A low-activity mutant of one of the catalytic bases, E4-68 (Asp55Cys), did bind to BMCC, although E4-51 (Asp55Cys) did not. The ratios of soluble to insoluble reducing sugar produced after filter paper hydrolysis by E4-90, E4-68, E4-74, and E4-51 were 6.9, 3.5, 1.3, and 0.6, respectively, indicating that the family IIIc CBD is important for E4 processivity.  相似文献   

6.
Polymerization experiments were performed using dry glycine under various pressures of 5–100 MPa at 150°C for 1–32 days. The series of experiments was carried out under the assumption that the pore space of deep sediments was adequate for dehydration polymerization of pre-biotic molecules. The products show various colors ranging from dark brown to light yellow, depending on the pressure. Visible and infrared spectroscopy reveal that the coloring is the result of formation of melanoidins at lower pressures. High-performance liquid chromatography and mass spectrometry analyses of the products show that: (1) glycine in all the experimental runs oligomerizes from 2-mer to 10-mer; (2) the yields are dependent on pressure up to 25 MPa and decrease slightly thereafter; and (3) polymerization progressed for the first 8 days, while the amounts of oligomers remained constant for longer-duration runs of up to 32 days. These results suggest that pressure inhibits the decomposition of amino acids and encourages polymerization in the absence of a catalyst. Our results further imply that abiotic polymerization could have occurred during diagenesis in deep sediments rather than in oceans.  相似文献   

7.
8.
Abstract

The ability of polyamines to displace the minor groove-binding dye Hoechst 33258 from calf thymus DNA was investigated. Polyamines displace non-specific DNA phosphate bound Hoechst in a charge-dependent fashion, but show very little ability to displace the high affinity binding of Hoechst in the minor groove of DNA. This high affinity binding is, however, sensitive to ethidium bromide and the minor groove binding drug berenil. These studies suggest that polyamines probably bind DNA in the minor groove very weakly, if at all, relative to known minor groove binding agents.  相似文献   

9.
10.
There is often an interest in knowing, for a given ligand concentration, how many protein molecules have one, two, three, etc. ligands bound in a specific manner. This is a question that cannot be addressed using conventional ensemble techniques. Here, a mathematical method is presented for separating specific from nonspecific binding in nonensemble studies. The method provides a way to determine the distribution of specific binding stoichiometries at any ligand concentration when using nonensemble (e.g., single-molecule) methods. The applicability of the method is demonstrated for ADP binding to creatine kinase using mass spectroscopy data. A major advantage of our method, which can be applied to any protein-ligand system, is that no previous information regarding the mechanism of ligand interaction is required.  相似文献   

11.
天然纤维素的结晶区必需在内、外切纤维素酶的协同作用下,始可被降解,这是纤维素降解的限速步骤。内、外切纤维素酶均为β-1,4-糖苷键的水解酶,但单一的内、外切纤维素酶却都不能水解天然纤维素的结晶区。内、外切纤维素酶怎样协同降解纤维素的机理一直未得阐明,是天然纤维素降解机制研究中的难点。纤维素酶分子是由具有催化功能的催化结构域(catalytic domain,CD)和具有结合纤维素功能的纤维素结合(吸附)结构域(cellulse biding domain,CBD)及涟结它们的链结区(linker)序列组成。已知一细菌的CBD在吸附纤维素后,纤维素聚合物断裂形成短小纤维,但这一现象还未在真菌中有类似发现,通过对插入质粒pUC-18上的微紫青霉外切葡聚糖纤维二糖水解酶CBHI的 cDNA基因,进行系列序列定向缺失等体外操作,得到了催化结构域序列缺失的重组质粒,转化大肠杆菌JM109后,利用纤维素结合结构域CBD可吸附纤维素的特性,筛选到含CBD编码区的转化子PUC18G,生产出了LacZ-CBD融合蛋白,经木瓜蛋白酶有限酶切后,分离纯化得到了CBD结构域及其链结区称为:CBDCBHI。经X光衍射、红外光谱分析、热活力测定和扫描电镜观察表明,CBDCBHI吸附纤维素后,能够导致纤维素聚合物氢键断裂,结晶度减低和形成短纤维,从而在底物可及性上为内切葡聚糖酶的水解糖化作用提供了条件,为真菌内、外切纤维素酶协同降解天然纤维素的作用机制提供了实验支持,并提出了内切纤维素酶的水解作用可为外切纤维素酶吸附纤维素提供能量的推论。  相似文献   

12.
Abstract

The 9-aminoacridine-DNA binding curve is analyzed in two ways: with polyelectrolyte effects neglected and with polyelectrolyte effects included. It is found that the analysis which includes polyelectrolyte effects is consistent with the violation of neighbor exclusion displayed by diacridine complexes as observed by Atwell et al. and by Zimmerman and coworkers. However the analysis which neglects polyelectrolyte effects is inconsistent with the diacridine results. This comparison supports the necessity of including polyelectrolyte effects in the analysis of drug-DNA binding curves.  相似文献   

13.
14.
Abstract

This paper presents the effects of 125I labelling on human chorionic gonadotropin binding ability. The results obtained showed a marked difference in the half-life of the specific radioactivity of the radiolabelled hormone comparing the one obtained by “self-displacement” analysis and that calculated considering the half-life of the radioactive isotope (60 days for 125I). The decrease in the hormone half-life (t1/2= 3.10 days) was demonstrated by binding experiments performed at various days after hormone labelling. The affinity constant (Ka) and the number of binding sites obtained after Scatchard analysis using rat testes as receptor source, remained constant when the “self-displacement” specific radioactivity was used while they varied significantly if the 60 days half-life was considered for the data processing. The importance of the labelled hormone degradation as a possible cause of the decrease in the binding ability is also described.  相似文献   

15.
Two folate binding proteins are present in human milk; one of 27 kDa is a cleavage product of the other one (100 kDa) which possesses a hydrophobic membrane anchor. A drastic change of radioligand binding characteristics and appearance of aggregated weak-radioligand affinity forms on gel filtration occurred at low concentrations of both proteins in the absence of Triton X-100 or other amphiphatic substances, e.g. cetyltrimethylammonium and phospholipids. These findings are consistent with a model predicting association between unliganded and liganded monomers resulting in weak-ligand affinity dimers. Amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers (monomers become hydrophilic in the liganded state) thereby preventing association between these monomeric forms prevailing at low concentrations of the protein. Bio-Gel P-300 chromatography of the 27 kDa protein revealed a pronounced polymerization tendency, which diminished with decreasing protein concentrations, however, not in the presence of cetyltrimethylammonium. The data could have some bearings on observations indicating that naturally occurring amphiphatic substances, cholesterol and phospholipids, are necessary for the important clustering of membrane folate receptors.  相似文献   

16.
Indole-3-acetic acid at 10 µM caused a 30% decrease inthe weight-average molecular mass of xyloglucans extracted with24% KOH from the cell walls of epicotyl segments of azuki bean(Vigna angularis Ohwi et Ohashi cv. Takara). Concanavalin A(Con A) at 2 g liter–1 completely inhibited the IAA-inducedchange in the molecular mass of the xyloglucans. Con A alsosuppressed the autolysis of pectin-depleted cell walls, as wellas the breakdown of xyloglucans by a protein fraction that hadbeen extracted with 1 M NaCl from the cell walls of azuki beanepicotyls. These results indicate that Con A is a potent inhibitorof the breakdown of xyloglucans both in vivo and in vitro. Mostof the activity responsible for the decrease in staining byiodine and the increase in reducing power of solution of xyloglucansin the protein fraction from cell walls bound to a column ofCon A-Sepharose and was eluted by the specific hapten, methyl  相似文献   

17.
Calcium release for muscle contraction in skeletal muscle is mediated in part by the ryanodine receptor 1, RyR1, Ca2+-channel and is strongly affected by intrinsic modulators like Ca2+, Mg2+ and ATP. We showed differential effects on ATP binding in the presence of Ca2+ or Mg2+ ions using ESR spectroscopy and a spin-labeled ATP analog, SL-ATP (Dias et al. Biochemistry 45: 9408–9415, 2006). We here report the effects of RyR1 modulators like ryanodine, caffeine and dantrolene on the ATP binding of RyR1 using the same technique. We present evidence that the exogenous effectors induce changes within RyR1 that lead to different ATP binding characteristics: In the presence of the activating modulator, caffeine, or in the presence of ryanodine, which causes a half-open state of the channel, binding of eight ATP per RyR1 was observed, even in the presence of inhibitory Ca2+, suggestive of a stable “open” channel conformation. In the presence of the inhibitory modulator dantrolene, ATP binding affinity decreased in the presence of activating Ca2+, while in the presence of inhibitory Ca2+, ATP binding affinity increased, but at the same time the number of accessible sites decreased to four, suggestive of a closed conformation of the channel. The results imply that modulation of ATP binding to RyR1 as well as the overall number of accessible ATP binding sites on the channel are crucial for regulation and are in direct correlation with the modified activity of the channel induced by pharmacological agents.  相似文献   

18.

Background

Isomaltosyloligosaccharides (IMO) and dextran (Dex) are hardly digestible in the small intestine and thus influence the luminal environment and affect the maintenance of health. There is wide variation in the degree of polymerization (DP) in Dex and IMO (short-sized IMO, S-IMO; long-sized IMO, L-IMO), and the physiological influence of these compounds may be dependent on their DP.

Methodology/Principal Findings

Five-week-old male Wistar rats were given a semi-purified diet with or without 30 g/kg diet of the S-IMO (DP = 3.3), L-IMO (DP = 8.4), or Dex (DP = 1230) for two weeks. Dextran sulfate sodium (DSS) was administered to the rats for one week to induce experimental colitis. We evaluated the clinical symptoms during the DSS treatment period by scoring the body weight loss, stool consistency, and rectal bleeding. The development of colitis induced by DSS was delayed in the rats fed S-IMO and Dex diets. The DSS treatment promoted an accumulation of neutrophils in the colonic mucosa in the rats fed the control, S-IMO, and L-IMO diets, as assessed by a measurement of myeloperoxidase (MPO) activity. In contrast, no increase in MPO activity was observed in the Dex-diet-fed rats even with DSS treatment. Immune cell populations in peripheral blood were also modified by the DP of ingested saccharides. Dietary S-IMO increased the concentration of n-butyric acid in the cecal contents and the levels of glucagon-like peptide-2 in the colonic mucosa.

Conclusion/Significance

Our study provided evidence that the physiological effects of α-glucosaccharides on colitis depend on their DP, linkage type, and digestibility.  相似文献   

19.
The regulation of actin is key for controlled cellular function. Filaments are regulated by actin-binding proteins, but the nucleotide state of actin is also an important factor. From extended molecular dynamics simulations, we find that both nucleotide states of the actin monomer have significantly less twist than their crystal structures and that the ATP monomer is flatter than the ADP form. We also find that the filament’s pointed end is flatter than the remainder of the filament and has a conformation distinct from G-actin, meaning that incoming monomers would need to undergo isomerization that would weaken the affinity and slow polymerization. Conversely, the barbed end of the filament takes on a conformation nearly identical to the ATP monomer, enhancing ATP G-actin’s ability to polymerize as compared with ADP G-actin. The thermodynamic penalty imposed by differences in isomerization for the ATP and ADP growth at the barbed end exactly matches experimental results.  相似文献   

20.
Influenza neuraminidase is an important drug target. Glycans are present on neuraminidase and are generally considered to inhibit antibody binding via their glycan shield. In this work, we studied the effect of glycans on the binding kinetics of antiviral drugs to the influenza neuraminidase. We created all-atom in silico systems of influenza neuraminidase with experimentally derived glycoprofiles consisting of four systems with different glycan conformations and one system without glycans. Using Brownian dynamics simulations, we observe a two- to eightfold decrease in the rate of ligand binding to the primary binding site of neuraminidase due to the presence of glycans. These glycans are capable of covering much of the surface area of neuraminidase, and the ligand binding inhibition is derived from glycans sterically occluding the primary binding site on a neighboring monomer. Our work also indicates that drugs preferentially bind to the primary binding site (i.e., the active site) over the secondary binding site, and we propose a binding mechanism illustrating this. These results help illuminate the complex interplay between glycans and ligand binding on the influenza membrane protein neuraminidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号