首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Characterization of the adsorption of Xyloglucan to Cellulose   总被引:7,自引:0,他引:7  
The binding of xyloglucan- and cello-oligosaccharides to cellulosescan be expressed by Langmuir adsorption isotherms, in whichthe levels of adsorption maxima are all similar but very low.In the present study, although the adsorption constant increasedwith increases in the degree of polymerization (DP) of the 1,4-rß-glucosylresidues of xyloglucan- and cello-oligosaccharides, the adsorptionconstant of cellopentitol to cellulose was similar to that ofhendecosanosaccharide (glucose/xylose, 12 : 9), demonstratingless extensive binding in the case of xyloglucan oligosaccharidesin spite of longer chains of 1,4-rß-glucosyl residues.The binding to cellulose of xyloglucans from pea and Tamarindusindica can also be expressed as Langmuir adsorption isotherms.The adsorption constant for pea xyloglucan with a DP for 1,4-rß-glucosylresidues of 150 was obviously higher than that for Tamarindusxyloglucan with a DP of 3,000. The adsorption maximum and adsorptionconstant of Tamarindus xyloglucan decreased gradually as theDP of 1,4-rß-glucosyl residues decreased from 3,000to 64. This result demonstrates that fucosylated pea xyloglucanhas a higher adsorption constant for cellulose than non-fucosylatedTamarindus xyloglucan when the DP of 1,4-rß-glucosylresidues is identical. These findings indicate that xyloglucanbinds to cellulose as a mono-layer and fucosyl residues contributeto the increase in adsorption affinity. (Received June 4, 1994; Accepted September 10, 1994)  相似文献   

2.
Xyloglucan 4-ß-D-glucosyltransferase, an enzyme responsiblefor the formation of the xyloglucan backbone, in a particulatepreparation of soybean cells has been compared with ß-1,4-glucan4-ß-D-glucosyltransferase of the same origin. Thefollowing observations indicate that the enzyme system of xyloglucansynthesis does not contain ß-1,4-glucan 4-ß-D-glucosyltransferaseactivity, although both enzymes transfer the glucosyl residuefrom UDP-glucose to form the ß-1,4-glucosidic linkage:1. The incorporation of [14C]glucose into xyloglucan dependedon the presence of UDP-xylose in the incubation mixture. 2.No measurable amount of radioactivity was incorporated fromUDP-[14C]xylose into the cello-oligosaccharides, although theincorporation of [14C]xylose into xyloglucan depended on thepresence of UDP-glucose in the incubation mixture (Hayashi andMatsuda 1981b). 3. The activity of xyloglucan 4-ß-D-glucosyltransferasewas stimulated more strongly by Mn2+ than by Mg2+, whereas Mg2+was the most active stimulator for the activity of ß-1,4-glucan4-ß-D-glucosyltransferase. 4. An addition of GDP-glucose(100 µM) to the incubation mixture inhibited the activityof xyloglucan 4-ß-D-glucosyltransferase by 17%, whereasthe activity of ß-1,4-glucan 4-ß-D-glucosyltransferasewas inhibited 56% under the same conditions. 5. Irpex exo-cellulasedid not hydrolyze the xyloglucan synthesized in vitro. 6. Theß-1,4-glucan synthesized in vitro was not a branchedxyloglucan because it gave no 2,3-di-O-methyl glucose derivativeon methylation analysis. 7. Pulse-chase experiments indicatedthat the ß-1,4-glucan was not transformed into thexyloglucan. The subcellular distribution of the xyloglucan synthase, however,was similar to that of the ß-1,4-glucan synthase (Golgi-located1,4-ß-D-glucan 4-ß-D-glucosyltransferase).Thus, it appears that the latter enzyme is located at a siteclose to xyloglucan synthase and is set aside for the assemblyof these polysaccharides into the plant cell surface. (Received May 21, 1981; Accepted October 13, 1981)  相似文献   

3.
Xyloglucans were isolated from the 24% KOH-soluble fractionof the cell walls of bulbs of onion (Allium cepa), garlic (Alliumsativum) and their hybrid. The polysaccharides yielded singlepeaks upon gel filtration with average moleular weights of 65,000for onion, 55,000 for garlic and 82,000 for the hybrid. Compositionalanalysis of the oligosaccharide units after digestion with anendo-1,4-ß-glucanase from Streptomyces indicated thatthe polysaccharides were constructed of four kinds of repeatingoligosaccharide unit, namely, a decasaccharide (glucose/xylose/galactose/fucose,4 : 3 : 2 : 1), a nonasaccharide (glucose/xylose/galactose/fucose,4 : 3 : 1 : 1), an octasaccharide (glucose/xylose/galactose,4 : 3 : 1 ) , and a heptasaccharide (glucose/xylose, 4 : 3).The xyloglucan from the hybrid contained highly fucosylatedunits that resembled those from onion rather than from garlic.The analysis also revealed that the xyloglucans from Alliumspecies contain highly substituted xylosyl residues with fucosyl-galactosylresidues, suggesting that these monocotyledonous plants resembledicotyledons in the structural features of their xyloglucans. (Received November 1, 1993; Accepted June 16, 1994)  相似文献   

4.
A wall-bound endo-1,4-ß-glucanase (EC 3.2.1.4 [EC] ) wasobtained from a preparation of the cell walls of suspension-culturedpoplar cells and purified to electrophoretic homogeneity bycation-exchange, hydrophobic, and gel-filtration chromatography.The molecular mass was estimated to be 47 kDa by SDS-PAGE and48 kDa by gel filtration on Superdex 200 pg. The isoelectricpoint (pI) was 5.6. The purified enzyme catalyzed the endo-hydrolysisof carboxymethylcellulose with an optimal pH of 6.5, a Km of1.2 mg ml-1, and a Vmax of 280 units. The purified enzyme specificallyhydrolyzed the 1,4-ß-glucosyl linkages of carboxymethylcellulose,phospho-swollen cellulose, lichenan, xylan and xyloglucan. Theactivity of the enzyme was strongly stimulated by cysteine-HCl.The N-terminal sequence of the enzyme was similar to that ofan extracellular endo-1,4-ß-glucanase found in suspensioncultures of poplar cells and some homology was recognized toavocado fruit-ripening and bean abscission endo-1,4-ß-glucanases. 1This work was supported in part by a grant from the Toray ScienceFoundation, Japan, and by a Grant-in-Aid from the Ministry ofEducation, Science and Culture of Japan.  相似文献   

5.
A macromolecular complex composed of xyloglucan and cellulosewas isolated from elongating regions of stems of etiolated pea(Pisum sativum L. var Alaska) seedlings and binding of a xyloglucan-specificantibody was examined after treatment of the complex with endo-1,4-ß-glucanaseor 24% KOH. The antibody bound to the complex but the extentof binding was reduced after treatment of the complex with endo-1,4-ß-glucanaseand was hardly detectable after treatment with 24% KOH. Themolecular weight of the xyloglucan that remained (5%) in theß-glucanase-treated complexes was less than 9,200.Pea xyloglucan was allowed to bind to enzymeand alkali-treatedcomplexes to generaly reconstituted complexes. The amount ofthe antibody that bound to each type of reconstituted complexwas similar but was much lower than that bound to the nativecomplex. Immunogold labeling indicated that most of the antigenwas widely distributed between microfibrils in the native complex,whereas the antigen appeared to be confined to the microfibrilsin the reconstituted complexes. These findings suggest thata part of each xyloglucan molecule is strongly associated withcellulose microfibrils while the rest is free of the microfibrilsin the native complex. 1This work was supported in part by a grant from the YamadaScience Foundation.  相似文献   

6.
A ß-D-glucanase activity hydrolyzing 1,3:1,4-ß-D-glucanwas released from the cell walls of barley by 3M LiCl treatment.It was purified by sequential cation-exchange, gel-filtrationand hydrophobic chromatography. The molecular mass of the glucanasewas 66 kDa as determined by SDS-polyacrylamide gel electrophoresis.Sequence determination of the first thirty amino acids of theN-terminus revealed a high homology of this enzyme to the Pseudomonasl,4-ß-D-glucosidase (56.5%). The purified ß-D-glucanasehas a pH optimum at 5.0, and hydrolyzes oligosaccharides containingß-D-1,3 or ß-D-1,4 linkage. The glucanaseshowed maximum hydrolytic activity toward laminaritetraose,the rate being about two times that of cellotetraose and aboutfour times that of gentiobiose. Polysaccharides such as lichenan,l,3:l,4-ß-D-glucan (from barley), laminarin and pustulanare also hydrolyzed, but not carboxylmethyl-curdlan, carboxymethyl-cellulose,xyloglucan and maltose. The purified ß-D-glucanaseyielded monomeric glucose from laminarihexaose, and exhibitedcharacteristics of an exo-l,3-ß-D-glucanase (EC 3.2.1.58 [EC] ).The activity and biochemical characteristics of this enzymesuggest that it is an exo-l,3-ß-D-glucanase involvedin the rapid turnover of l,3:l,4-ß-D-glucan in barleycell walls during seedling growth. (Received September 24, 1996; Accepted December 9, 1996)  相似文献   

7.
Characterization of the Hydrolytic Activity of Avocado Cellulase   总被引:4,自引:0,他引:4  
The cellulase produced by ripening avocado fruits (Persea americanaMill cv. Fuerte) was isolated and purified using chromatofocusing(pH 7–4) and gel filtration on a Bio- Gel P-100 column.Characteristics of the cellulase were assessed by using, assubstrates, a range of polysaccharides containing various sugarresidues and varying types of linkages between the residues.Only those substrates containing (14)-ß-glucosyl linkageswere hydrolyzed by the purified enzyme. Two polysaccharidesthat were extensively hydrolyzed by the cellulase were carboxymethylcelluloseand (13),(14)-ß-D-glucans such as from Avena endospermcell walls. Characterization of the activity in the degradationof the mixed linked glucan of Avena and cellodextrins indicatedthat the enzyme has a limit recognition-hydrolytic site of four(l4)-ß linked glucose residues. It was also foundthat the enzyme could cleave only (14)-ß-linkagesthat were adjacent to other (l4)-ß-D-glucosyl linkages.Activity of the cellulase against isolated avocado fruit cellwalls indicated that the purified enzyme was incapable of appreciablysolubilizing the cellulosic components of these walls. 1Supported in part by National Science Foundation Research GrantPCM 7818588. 2USDA-ARS, Dairy Forage Research Center, University of Wisconsin,Madison, WI 53706. 3Department of Vegetable Crops, University of California, Davis,CA 95616. (Received September 14, 1985; Accepted February 12, 1986)  相似文献   

8.
β-Glucosidases designated MoCel3A and MoCel3B were successfully overexpressed in Magnaporthe oryzae. MoCel3A and MoCel3B showed optimal activity at 50 °C and pH 5.0–5.5. MoCel3A exhibited higher activity on higher degree of polymerization (DP) oligosaccharides and on β-1,3-linked oligosaccharides than on β-1,4-linked oligosaccharides. Furthermore, MoCel3A could liberate glucose from polysaccharides such as laminarin, 1,3-1,4-β-glucan, phosphoric acid-swollen cellulose, and pustulan, of which laminarin was the most suitable substrate. Conversely, MoCel3B preferentially hydrolyzed lower DP oligosaccharides such as cellobiose, cellotriose, and laminaribiose. Furthermore, the synergistic effects of combining enzymes including MoCel3A and MoCel3B were investigated. Depolymerization of 1,3-1,4-β-glucan by M. oryzae cellobiohydrolase (MoCel6A) enhanced the production of glucose by the actions of MoCel3A and MoCel3B. In these reactions, MoCel3A hydrolyzed higher DP oligosaccharides, resulting in the release of glucose and cellobiose, and MoCel3B preferentially hydrolyzed lower DP oligosaccharides including cellobiose. On the other hand, MoCel3A alone produced glucose from laminarin at levels equivalent to 80% of maximal hydrolysis obtained by the combined action of MoCel3A, MoCel3B, and endo-1,3-β-glucanase. Therefore, MoCel3A and MoCel3B activities yield glucose from not only cellulosic materials but also hemicellulosic polysaccharides.  相似文献   

9.
Hydrolysis of the fragment heptasaccharide (glucose : xylose= 4 : 3) from xyloglucan with an enzyme preparation from soybeancell wall produced a penta- and a trisaccharide. The resultsof fragmentation analysis of these oligosaccharides with Aspergillusoryzae ß-D-glucosidase indicate the following structuresfor the penta- and trisaccharide. The detection of these intermediate products suggested thatdegradation of the heptasaccharide took place by sequentialsplitting of the -D-xylosidic and ß-D-glucosidic linkages.A characteristic action pattern of the a-D-xylosidase in theenzyme preparation was found. 1Present address: Department of Biology, McGill University,Montreal, Canada. 2Present address: Department of Botany, Iowa State University,Ames, Iowa 50010, U.S.A. (Received August 20, 1982; Accepted December 7, 1982)  相似文献   

10.
Two auxin-induced endo-1,4-β-glucanases (EC 3.2.1.4) were purified from pea (Pisum sativum L. var. Alaska) epicotyls and used to degrade purified pea xyloglucan. Hydrolysis yielded nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and heptasaccharide (glucose/xylose, 4:3) as the products. The progress of hydrolysis, as monitored viscometrically (with amyloid xyloglucan) and by determination of residual xyloglucan-iodine complex (pea) confirmed that both pea glucanases acted as endohydrolases versus xyloglucan. Km values for amyloid and pea xyloglucans were approximately the same as those for cellulose derivatives, but Vmax values were lower for the xyloglucans. Auxin treatment of epicotyls in vivo resulted in increases in net deposits of xyloglucan and cellulose in spite of a great increase (induction) of endogenous 1,4-β-glucanase activity. However, the average degree of polymerization of the resulting xyloglucan was much lower than in controls, and the amount of soluble xyloglucan increased. When macromolecular complexes of xyloglucan and cellulose (cell wall ghosts) were treated in vitro with pea 1,4-β-glucanase, the xyloglucan component was preferentially hydrolyzed and solubilized. It is concluded that xyloglucan is the main cell wall substrate for pea endo-1,4-β-glucanase in growing tissue.  相似文献   

11.
An endo-1,4-rß-glucanase (EC 3.2.1.4 [EC] ) was purifiedto apparent homogeneity from the culture medium of poplar (Populusalba L.) cells by sequential anion-exchange, hydrophobic, andgel-filtration chromatography. The preparation of extracellularrß-glucanase was homogeneous on SDS-polyacrylamidegel electrophoresis (PAGE) and native PAGE. The molecular weight,as determined by SDS-PAGE was 50,000, whereas that determinedby gel filtration was 40,000. The isoelectric point (pI) was5.5. The purified enzyme catalyzed the endohydrolysis of carboxy-methylcellulosewith a pH optimum of 6.0 and a km of 1.0 mg ml–1. Theenzyme specifically cleaved the 1,4-rß-glucosyl linkagesof carboxymethylcellulose, swollen cellulose, lichenan and xyloglucan,although the last was hydrolyzed more slowly than the othertested substrates. The activity of the endo-1,4-rß-glucanaseincreased up to the early stage of the mid-logarithmic phaseof growth and then decreased rapidly, suggesting that the rß-glucanaseis induced before cell development. (Received April 28, 1993; Accepted July 19, 1993)  相似文献   

12.
Biosynthetically, bovine N-acetylglucosainine ß 1,4-galacto-syltransferase(GalT) catalyses the transfer of galactosyl residues from UDP-Galto the 4-position of GlcNAc units, resulting in the productionof N-acetyllactosamine sequences. UDP-Glc and UDP-GalNAc werealso found to act as donors for this enzyme, allowing the preparationof ßGlc(14)-ßGlcNAc and ßGalNAc(14)ßGlcNActerminating structures on the milligram scale. GalT could thusbe used to add ßGalNAc to ßGlcNAc(12)Manterminating structures, converting them to the ßGalNAc(14)ßGlcNAc(12)Mansequences found on glycoprotein hormones. GalT did not transferGlcNAc residues from UDP-GlcNAc, but it could utilize UDP-GlcNH2as a donor. Synthesis of ßGlcNAc(14)ßGlcNAcsequences could therefore be accomplished by transfer of GlcNH2from its UDP derivative, followed by N-acetylation of the productamino-disaccharide using acetic anhydride in methanol. The productsof the enzymatic reactions were characterized by 1H-NMR-spectroscopyand fast-atom bombardment mass spectrometry. This work expandsthe scope of the combined chemical-enzymatic synthesis of complexcarbohydrates, using glycosyltrans-ferases, to the productionof oligosaccharides different from those for which these enzymeswere designed. These unnatural reactions should find applicationin glycoprotein and glycolipid remodelling. galactosyltransferase chemica1-enzymatic synthesis of oligosaccharides oligosaccharide analogues sugar-nucleotide analogues carbohydrate remodelling  相似文献   

13.
Autoradiographic experiments using preparations of isolatedphragmoplast obtained from tobacco cultured cells revealed thatthe radioactivity incorporated into insoluble material fromUDP-[3H]glucose was exclusively present at the cell plate ofisolated phragmoplasts. Most of the radioactivity incorporatedinto isolated phragmoplasts from UDP-[14C]glucose was solubilizedby 1,3-ß-glucanase and the solubilized radioactivitywas associated only with glucose, indicating that most of theradioactivity was incorporated into 1,3-ß-glucan.In the presence of high concentrations of unlabeled UDP-glucose,isolated phragmoplasts incorporated radioactivity from UDP-[3H]xylose.Most of the radioactivity incorporated into insoluble materialwas present at several sites distributed around the nuclei,while only little was found at the cell plate. (Received October 2, 1991; Accepted February 24, 1992)  相似文献   

14.
A procedure has been devised to extract and identify structuralcomponents of the xyloglucan of Zea mays L. (hybrid B73 ? Mo17) shoot cell-walls. A water-insoluble fraction of Zea shootcell-walls, after pretreatment with purified Bacillus subtilis(1 3),(1 4)-ß-D-glucan 4-glucanohydrolase, purifiedB. subtilis endo-(l 4)-ß-xylanase and an enzyme preparationfrom B. subtilis enriched in glucuronoxylanase (Kato and Nevins1984a, Nishitani and Nevins 1991), was subsequently treatedwith 7 M urea. The carbohydrates (0.8% of the water-insolublefraction of Zea shoot cell-walls) liberated by the urea treatment,were comprised of xyloglucan polymers with molecular weightswhich varied from 1.0 ? 104 to 4.0 7times; 104 Da. Other wallfragments associated with the isolated polymer suggest covalentbonding of xyloglucan to other polysaccharides. Structural analysesof the xyloglucan polymers reveal a cellulose-like backbonewith about 35% of the C-6 positions substituted with xyloseand other sugars. About 80% of xyloglucan present in the enzyme-pretreatedwater-insoluble fraction of Zea shoot cell-walls was liberatedby the urea treatment. The procedure avoids the use of alkaliin the solubilization of xyloglucan. 1Supported in part by National Science Foundation research grantsPCM 7818588 and DMB 8505901. (Received September 10, 1990; Accepted May 15, 1991)  相似文献   

15.
Pea xyloglucan and cellulose : I. Macromolecular organization   总被引:25,自引:18,他引:7       下载免费PDF全文
A macromolecular complex composed of xyloglucan and cellulose was obtained from elongating regions of etiolated pea (Pisum sativum L. var. Alaska) stems. Xyloglucan could be solubilized by extraction of this complex with 24% KOH-0.1% NaBH4 or by extended treatment with endo-1,4-β-glucanase. The polysaccharide was homogeneous by ultracentrifugal analysis and gel filtration on Sepharose CL-6B, molecular weight 330,000. The structure of pea xyloglucan was examined by fragmentation analysis of enzymic hydrolysates, methylation analysis, and precipitation tests with fucose- or galactose-binding lectins. The polysaccharide was composed of equal amounts of two subunits, a nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and a heptasaccharide (glucose/xylose, 4:3), which appeared to be distributed at random, but primarily in alternating sequence. The xyloglucan:cellulose complex was examined by light microscopy using iodine staining, by radioautography after labeling with [3H]fucose, by fluorescence microscopy using a fluorescein-lectin (fucose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall `ghosts,' in which xyloglucan was localized both on and between the cellulose microfibrils. Since the average chain length of pea xyloglucan was many times the diameter of cellulose microfibrils, it could introduce cross-links by binding to adjacent fibrils and thereby contribute rigidity to the wall.  相似文献   

16.
Endo-1,4-ß-glucanase induced by treatment of pea seedlingswith 2,4-D was extracted from a preparation of the walls ofepicotyl cells. The ß-glucanase was purified by chromatographyon DEAE-cellulose, affinity chromatography on Con A-Sepharoseand SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The activityof ß-glucanase was retained after removal of SDS andextraction from polyacrylamide gels. The band of a protein (46kDa), that corresponded to the activity of endo-1,4-ß-glucanase,was injected directly into mice for preparation of antiserumand the protein was also subjected to amino acid sequencingafter blotting onto a membrane. Western blot analysis showedthat the antiserum obtained bound to a 46-kDa polypeptide andrecognized endo-1,4-ß-glucanase. The N-terminal sequenceof the 46-kDa polypeptide revealed some homology to abscissionendo-1,4-ß-glucanases of bean and avocado fruit. (Received September 29, 1993; Accepted January 20, 1994)  相似文献   

17.
The basidiomycete Phanerochaete chrysosporium produces xyloglucanase Xgh74B, which has the glycoside hydrolase (GH) family 74 catalytic domain and family 1 carbohydrate-binding module, in cellulose-grown culture. The recombinant enzyme, which was heterologously expressed in the yeast Pichia pastoris, had high hydrolytic activity toward xyloglucan from tamarind seed (TXG), whereas other beta-1,4-glucans examined were poor substrates for the enzyme. The existence of the carbohydrate-binding module significantly affects adsorption of the enzyme on crystalline cellulose, but has no effect on the hydrolysis of xyloglucan, indicating that the domain may contribute to the localization of the enzyme. HPLC and MALDI-TOF MS analyses of the hydrolytic products of TXG clearly indicated that Xgh74B hydrolyzes the glycosidic bonds of unbranched glucose residues, like other GH family 74 xyloglucanases. However, viscometric analysis suggested that Xgh74B hydrolyzes TXG in a different manner from other known GH family 74 xyloglucanases. Gel permeation chromatography showed that Xgh74B initially produced oligosaccharides of degree of polymerization (DP) 16-18, and these oligosaccharides were then slowly hydrolyzed to final products of DP 7-9. In addition, the ratio of oligosaccharides of DP 7-9 versus those of DP 16-18 was dependent upon the pH of the reaction mixture, indicating that the affinity of Xgh74B for the oligosaccharides of DP 16-18 is affected by the ionic environment at the active site.  相似文献   

18.
Macromolecular complexes composed of xyloglucan and cellulosewere produced by heating amorphous celluloses with xyloglucanin water at temperatures above 160°C. The extraction ofxyloglucan from the annealed specimens required concentratedalkali which might cause microfibrils to swell. Annealed specimensobtained by heating at 200°C had a somewhat fiber-like appearanceeven though mixtures of amorphous celluloses and xyloglucanwere completely amorphous before annealing. Annealing occursspecifically between amorphous celluloses at high temperatures,where xyloglucan may be entrapped into the bundles of cellulosefibers during fiber formation rather than bound to the surfaceof the fibers. (Received September 3, 1993; Accepted December 1, 1993)  相似文献   

19.
A xyloglucan-specific endo-1,4-[beta]-glucanase was isolated from the apoplast fraction of auxin-treated pea (Pisum sativum) stems, in which both the rate of stem elongation and the amount of xyloglucan solubilized were high. The enzyme was purified to apparent homogeneity by sequential cation-exchange chromatographies, affinity chromatography, and gel filtration. The purified enzyme gave a single protein band on sodium dodecyi sulfate-polyacrylamide gel electrophoresis, and the molecular size was determined to be 77 kD by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 70 kD by gel filtration. The isoelectric point was about 8.1. The enzyme specifically cleaved the 1,4-[beta]-glucosyl linkages of the xyloglucan backbone to yield mainly nona- and heptasaccharides but did not hydrolyze carboxymethylcellulose, swollen cellulose, and (1->3, 1->4)-[beta]-glucan. By hydrolysis, the average molecular size of xyloglucan was decreased from 50 to 20 kD with new reducing chain ends in the lower molecular size fractions. This suggests that the enzyme has endo-1,4-[beta]-glucanase activity against xyloglucan. In conclusion, a xyloglucan-specific endo-1,4-[beta]-glucanase with an activity that differs from the activities of cellulase and xyloglucan endotransglycosylase has been isolated from elongating pea stems.  相似文献   

20.
Since xyloglucan is believed to bind to cellulose microfibrils in the primary cell walls of higher plants and, when isolated from the walls, can also bind to cellulose in vitro, the binding mechanism of xyloglucan to cellulose was further investigated using radioiodinated pea xyloglucan. A time course for the binding showed that the radioiodinated xyloglucan continued to be bound for at least 4 hours at 40°C. Binding was inhibited above pH 6. Binding capacity was shown to vary for celluloses of different origin and was directly related to the relative surface area of the microfibrils. The binding of xyloglucan to cellulose was very specific and was not affected by the presence of a 10-fold excess of (1→2)-β-glucan, (1→3)-β-glucan, (1→6)-β-glucan, (1→3, 1→4)-β-glucan, arabinogalactan, or pectin. When xyloglucan (0.1%) was added to a cellulose-forming culture of Acetobacter xylinum, cellulose ribbon structure was partially disrupted indicating an association of xyloglucan with cellulose at the time of synthesis. Such a result suggests that the small size of primary wall microfibrils in higher plants may well be due to the binding of xyloglucan to cellulose during synthesis which prevents fasciation of small fibrils into larger bundles. Fluorescent xyloglucan was used to stain pea cell wall ghosts prepared to contain only the native xyloglucan:cellulose network or only cellulose. Ghosts containing only cellulose showed strong fluorescence when prepared before or after elongation; as predicted, the presence of native xyloglucan in the ghosts repressed binding of added fluorescent xyloglucan. Such ghosts, prepared after elongation when the ratio of native xyloglucan:cellulose is substantially reduced, still showed only faint fluorescence, indicating that microfibrils continue to be coated with xyloglucan throughout the growth period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号