首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubules are packed and linked together in a well defined hexagonal arrangement in the cytopharyngeal microtubule bundles of the ciliate Nassula. Early stages in the morphogenesis of these bundles have been examined. Elements which nucleate assembly of bundle microtubules are apparently closely associated before tubule assembly commences. These nucleating elements seem to be bound together in highly ordered arrays to form microtubule-nucleating-templetes. Each array of elements is attached to the proximal end of a basal body and appears to establish the pattern of tubule packing and cross-sectional shape of a tubule bundle. A self-assembly procedure which accounts for the anisometric growth and shaping of a template and its microtubule bundle is proposed.  相似文献   

2.
The sperm flagella of the blowfly Sarcophaga bullata demonstrate the relationship of radial projections in the matrix region to the microtubule organization of the axoneme. The A microtubule of each peripheral doublet is connected to the central sheath by a series of paired radial links. The links lie along the tubule wall with a alternate spacing of about 320/560 A. The distal end of each link is enlarged into a globular head that connects via a transitional link to the helical sheath around the central microtubules. The radial link pairs are disposed in the form of a double helix with a pitch of about 1760 A. It is proposed that a similar organization is common to all cilia and flagella showing ninefold symmetry and must provide, in part, the morphological basis for motility.  相似文献   

3.
Summary The newly-formed guard cell mother cells (GMCs) ofAsplenium nidus are small, lens-shaped and are formed by one or two asymmetrical divisions. Their growth axis is parallel to the plane of their future division, a process during which the internal periclinal wall (IPW) is detached from the partner wall of the underlying cell(s). This oriented GMC expansion occurs transversely to a microfibril bundle, which is deposited externally to a U-like microtubule (Mt) bundle and a co-localized actin filament (Af) bundle. They line the IPW and the major part of the anticlinal walls. The deposition of the microfibril bundle is followed by the slight constriction of the internal part of the GMCs and the broadening of the substomatal cavity. The IPW forms a distinct bulging distal to the neighbouring leaf margin, as well as a less defined proximal one. During the IPW bulging, the Mts and Afs under the external periclinal wall (EPW) attain a radial organization. This is followed by thinning of the central EPW region, which becomes impregnated with a callose-like glucan. The rest of the EPW becomes unequally thickened. The disintegration of the U-like Mt bundle is succeeded by the organization of radial Mt and Af arrays under the IPW. The radial Mt systems, controlling the alignment of the newly-deposited microfibrils, allow the GMC to assume a round paradermal profile. The GMCs form a preprophase Mt band (PPB) perpendicular to the interphase U-like Mt bundle. The anticlinal PPB portions appear first and those lining the periclinal walls later. The cytoplasm adjacent to the latter walls retain the radial Mt systems during early preprophase, simultaneously with the anticlinal PPB portions. The observations suggest that the GMCs of the fernA. nidus obtain a unique form, as a result of a particular polarity established in the cortical cytoplasm of the periclinal walls, in which Mts and Afs appear involved. This polarity persists in cell division and is inherited to guard cells (GCs). It provides primary morphogenetic information not only to GMCs but also to GCs.Abbreviations Af actin filament - EPW external periclinal wall - GC guard cell - GMC guard cell mother cell - IPW internal periclinal wall - Mt microtubule - MTOC microtubule organizing centre - PPB preprophase microtubule band  相似文献   

4.
Summary Examination was made of the structure and assembly of the cortical microtubule (MT) cytoskeleton in the coenocytic green algaBoodlea coacta (Dickie) Murray et De Toni by immunofluorescence microscopy. Cortical MTs inBoodlea protoplasts are arranged randomly but some show a meridional arrangement within 6 h after protoplast formation. At 6–9 h such MTs become highly concentrated and parallel to each other in certain areas. At 12 h the concentration is uniformly high throughout the cell, indicating the completion of high density meridional arrangement of cortical MTs. Cortical MTs exhibiting a high density, meridional arrangement show characteristic disassembly by treatment with 10 M amiprophos-methyl (APM) or cold treatment (0 °C). Disassembly occurs by each MT unit at positions skipping 30–40 m in the transverse direction, and neighboring MTs subsequently disassemble to form MT groups. Each group becomes slender and then disappears completely within the following 24 h. The meridional arrangement of cortical MTs is disrupted by N-ethylmaleimide (NEM) accompanied by a remarkable reduction in density. The remaining MTs form groups at 30–40 m intervals from each other, as also occurs with drug or cold treatment, but disruption and density return to normal levels following removal of NEM. It appears that there are meridionally oriented channels, anchor-rich and anchor-poor, in the plasma membrane. The channels could be distributed alternately and anchors could be deposited in a cross-linking manner with cortical MTs to form a stable cortical MT-cytoskeleton. MTs comprising the cortical MT cytoskeleton could be oriented by meridionally oriented channels of anchors which are distributed following establishment of cell polarity.Abbreviations APM amiprophos-methyl - MT microtubule - MTOC microtubule organizing center - NEM N-ethylrnaleimide  相似文献   

5.
The cytopharyngeal basket of Pseudomicrothorax dubius , through which filamentous blue-green algae are ingested, consists of 22 (± 3) nemadesmata and nemadesmal lamellae, in the form of a tube. A cytostome, delimited by the cell membrane and surrounded by 22 (± 3) major and minor cortical corrugations, covers the end of the basket where the latter is attached to the cell cortex. Each nemadesm, at its greatest diameter, consists of about 200 microtubules which are joined together by sheet-like cross-bridges. The cross-bridges appear to be responsible for the high structural resilience of the nemadesmata. Each nemadesmal lamella is a ribbon of 20–30 microtubules, with two arm-like structures associated with one side of each microtubule. The arms are partially embedded in a fine filamentous layer. Except for a perforated zone, the wall of the basket is completely closed due to the presence of a filamentous sheath which extends between adjacent nemadesmata. Absence of the sheath allows movement of vesicles between the cytoplasm and the lumen of the basket in the perforated zone. The sheath is capable of elastic stretching during food uptake.  相似文献   

6.
As seen in transverse section, doublet elements of the axial unit of spermatozoa of Haematolocchus medioplexus, a frog lung-fluke, possess walls made up of protofibrillar subunits 50–60 Å in diameter. The partition between A and B members of a doublet element often show extra protofibrils which may partially occlude the “lumen” of the A tubule. Each A tubule possesses outer and inner lateral arms which repeat at longitudinal intervals of about 215 Å and which appear to be structurally dissimilar; the outer arm is expanded at its free end and the inner arm often connects to the B tubule of the adjacent doublet element. Regularly-spaced radial links connect the central sheath of an inner core complex to the A tubules of the peripheral doublet elements. Tests for magnesium-activated ATPase activity provide evidence that the enzyme is associated with the surfaces of doublet elements and the surface of the central sheath. Finally, study of an axial unit which developed in an abnormal manner suggests that normal differentiation of an axial unit may depend on the elaboration of a core complex and radial links.  相似文献   

7.
S. Kimura  S. Mizuta 《Planta》1994,193(1):21-31
The functions of the microtubule (MT) cytoskeleton in changing the orientation of microfibrils (MFs) in the cell walls of the coenocytic green alga Chaetomorpha moniligera Kjellman were investigated by electron microscopy. The cortical MT cytoskeleton in Chaetomorpha was comprised of longitudinally oriented MTs. Cellulose MFs, however, alternately changed their orientation longitudinally and transversely to form crisscross MF textures. Microtubules were parallel to longitudinally oriented MFs but never to those that were transversely oriented. The average density of MTs during the formation of longitudinally oriented MFs was 216 per 50 m of wall and that of transversely oriented MFs 170/50 m. To determine exactly the MT-density dependency of each MF orientation, changes in MF orientation were examined by changing MT density after treating and removing amiprophos-methyl (APM). Microtubules were reduced in number by a half (100/50 m) after 2 h and by 3/4 (50/50 m) after 3 h of treatment with APM (3 mM). This reduction was caused by the disappearance of alternating MTs. Microtubules retained this density (50/ 50 m) up to 6 h, and then gradually disappeared within 24 h. Microfibril orientation in the innermost cell wall was transverse after treatment with APM for 2 h but was helicoidal after 6 h. Polymerization of MTs occurred in the longitudinal direction following the removal of APM after treatment for 48 h. Microtubule density rose to about 100/50 m and 200/50 m after 6 h and 24 h, respectively. The orientation of MTs changed from helicoidal to transverse and transverse to longitudinal after 6 h and 24 h, respectively. When APM was removed prior to formation of the helicoidal texture, longitudinally oriented MFs appeared within 6 h. There is thus an alternating cycle of formation of longitudinally and transversely oriented MFs within a 12-h period. Formation of transversely oriented MFs as a result of APM treatment started in the middle of a cell as hoops which then extended in the apical and basal directions. Formation of longitudinally oriented MFs as a result of the removal of APM started from the apical end and proceeded toward the base. It follows from these results that: (1) the point of formation of longitudinally oriented MFs differs from that for transversely oriented MFs, (2) MF orientation in each case depends on a separately functioning mechanism, (3) MT density changes rhythmically to trigger a switch for crisscross orientation of MFs.Abbreviations APM amiprophos-methyl - MF microfibril - MT microtubule - TC terminal complex We thank Dr. K. Okuda for making helpful discussion and Miss. T. Matsuki for assistance with replica preparation.  相似文献   

8.
The ultrastructural aspects ofCyperus iria leaves showing the C4 syndrome and the typical C3 species,Carex siderosticta, in the Cyperaceae family were examined.C. iria exhibited the chlorocyperoid type, showing an unusual Kranz structure with vascular bundles completely surrounded by two bundle sheaths. The cellular components of the inner Kranz bundle sheath cells were similar to those found in the NADP-ME C4 subtype, having centrifugally arranged chloroplasts with greatly reduced grana and numerous starch grains. Their chloroplasts contained convoluted thyla-koids and a weakly-developed peripheral reticulum, although it was extensive mostly in mesophyll cell chloroplasts. The outer mestome bundle sheath layer was sclerenchymatous and generally devoid of organelles, but had unevenly thickened walls. Suberized lamellae were present on its cell walls, and they became polylamellate when traversed by plasmodesmata. Mesophyll cell chloroplasts showed well-stacked grana with small starch grains. InC. siderosticta, vascular bundles were surrounded by the inner mestome sheath and the outer parenchymatous bundle sheath with intercellular spaces. The mestome sheath cells degraded in their early development and remained in a collapsed state, although the suberized lamellae retained polylamellate features. Plastids with a crystalline structure, sometimes membrane-bounded, were found in the epidermal cells. The close interveinal distance was 35–50 μm inC. iria, whereas it was 157–218 μm inC. siderosticta. These ultrastructural characteristics were discussed in relation to their photosynthetic functions.  相似文献   

9.
D. Menzel 《Protoplasma》1985,125(1-2):103-110
Summary In the dichotomously branched caulerpalean green algaChlorodesmis fastigiata long range cytoplasmic streams run through the siphon and form a network of shorter strands in the region of the bulbous enlargement of the dichotomies. Continuous transport of organelles occurs along these streams, which are contructed of a central bundle of microtubules, around which the organelles are grouped. Both chloroplasts and amyloplasts exhibit a unique dorso-ventral symmetry: their flattened ventral side is closely apposed to the surface of the microtubule bundles. The concentric lamellar system (CLS) at the tip of the plastids invariably points in the direction of movement.These findings are discussed in relation to microtubule based motility. It is suggested that the unique plastid architecture serves as an efficient differentiation facilitating long range transport along the microtubule bundles.  相似文献   

10.
H. C. Hoch  R. C. Staples 《Protoplasma》1985,124(1-2):112-122
Summary The microtubule and F-actin cytoskeleton of nondifferentiated germlings ofUromyces phaseoli was studied using immunofluorescence methodologies. The microtubules were oriented mostly parallel to the longitudinal axis of the hypha. Microtubule depolymerizing agents, such as cold, demecolcine, griseofulvin and nocodazole, were effective in destroying the microtubule network, but not the F-actin system. Repolymerization of microtubules, following release from these agents, occurred first in the hyphal apices and not near the nuclei or spindle pole bodies. It was concluded that the microtubule nucleating region in such fungal cells is located in the apical regions. Enhanced microtubule arrays were visualized following incubation of the cells in taxol, an agent known to favor microtubule polymerization.  相似文献   

11.
Summary The ultrastructure of isolated generative cells ofAllemanda neriifolia at interphase and prophase was studied. The microtubule organization of the isolated cells was also investigated by immunofluorescence microscopy with a monoclonal anti--tubulin. After the generative cells had been isolated from the growing pollen tubes by osmotic shock, most of the cells were at prophase and only a few were at interphase. The interphase cell is spindle shaped and contains an ellipsoidal nucleus. In addition to the usual organelles, the cytoplasm of the interphase cell contains numerous vesicles (each measuring 40–50 nm in diameter) and two sets of longitudinally oriented microtubule bundles — one in the cortical region and the other near the nucleus. Most of the prophase cells are spherical in shape. Based on the ultrastructure and the pattern of microtubule cytoskeleton organization three types of prophase cells can be recognized. (1) Early prophase cell, which contains the usual organelles, numerous vesicles, and a spherical nucleus with condensed chromosomes. Longitudinally oriented microtubule bundles can no longer be seen present in the early prophase cell. A new type of structure resembling a microtubule aggregate appears in the cytoplasm. (2) Mid prophase cell, which has a spherical nucleus containing chromosomes that appear more condensed than those seen in the early prophase cell. In addition to containing the usual organelles, the cytoplasm of this cell contains numerous apparently randomly oriented microtubules. Few vesicles are seen and microtubule aggregates are no longer present. (3) Late prophase cell, typified by the lack of a nuclear envelope. Consequently, the chromosomes become randomly scattered in the cytoplasm. Microtubules are still present and some become closely associated with the chromosomes. The changes in the ultrastructure and in the pattern of microtubule organization in the interphase and prophase cells are discussed in relation to the method of isolation of the generative cells.  相似文献   

12.
The cytopharyngeal basket of Pseudomicrothorax dubius, through which filamentous blue-green algae are ingested, consists of 22 (+/- 3) nemadesmata and nemadesmal lamellae, in the form of a tube. A cytostome, delimited by the cell membrane and surrounded by 22 (+/- 3) major and minor cortical corrugations, covers the end of the basket where the latter is attached to the cell cortex. Each nemadesm, at its greatest diameter, consists of about 200 microtubules which are joined together by sheet-like cross-bridges. The cross-bridges appear to be responsible for the high structural resilience of the nemadesmata. Each nemadesmal lamella is a ribbon of 20--30 microtubules, with two arm-like structures associated with one side of each microtubule. The arms are partially embedded in a fine filamentous layer. Except for a perforated zone, the wall of the basket is completely closed due to the presence of a filamentous sheath which extends between adjacent nemadesmata. Absence of the sheath allows movement of vesicles between the cytoplasm and the lumen of the basket in the perforated zone. The sheath is capable of elastic stretching during food uptake.  相似文献   

13.
The ciliate Pseudomicrothorax dubius feeds on filamentous blue-green algae, ingesting them at rates of up to 15 μm per second, by means of a cytopharyngeal basket. The wall of the basket is composed of 22 ± 3 nemadesmata, each of which is a bundle of about 200 microtubules which are cross-linked in a hexagonal pattern. The lumen of the non-feeding basket is filled with cytoplasma into which project the nemadesmal lamellae. Each nemadesmal lamella is attached to a nemadesm and consists of a single row of 20–30 microtubules. Each microtubule of the nemadesmal lamella bears a row of pairs of arm-like projections which are embedded in a filamentous matrix. During feeding, the lumen of the basket is occupied by the developing food vacuole. The nemadesmal lamellae are observed between the vacuole membrane and the nemadesmata, and the arms of the nemadesmal lamellae microtubules are oriented toward the membrane of the food vacuole or of small vesicles. A mechanism for the generation of force for phagocytosis by means of the microtubule arms is proposed.
During food uptake the membrane of the food vacuole increases rapidly at rates up to 270 μm2 per second. Vacuole growth results from the fusion of membrane-bound vesicles. During phagocytosis a fast streaming of these vesicles can be observed in the cytoplasm surrounding the basket. The direction of streaming is opposite to that of ingestion of the algal filament. The vesicles enter the lumen of the basket at its anterior end, in a zone where the wall of the basket is perforated.  相似文献   

14.
The aim of this work was to investigate the fate of phosphoenolpyruvate (PEP) produced by decarboxylation of oxaloacetate during photosynthesis in the bundle sheaths of leaves of the PEP-carboxykinase C4 grass Spartina anglica Hubb. Mesophyll protoplasts and bundle sheath cells were separated enzymically and used to investigate activities and distributions of putative enzymes of the C4 cycle and the photosynthetic carbon metabolism of bundle sheath cells. The results indicate that neither conversion of PEP to pyruvate nor its conversion to 3-phosphoglycerate can account for all of the carbon flux through the C4 cycle during photosynthesis. It is likely, therefore, either that PEP moves directly from bundle sheath to mesophyll or that more than one pathway of regeneration of PEP is involved in the C4 cycle in this plant.Abbreviations Chl chlorophyll - PEP phosphoenolpyruvate - Pi phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

15.
Summary In order to study developmental changes in microtubule organization attending the formation of a longitudinally oriented preprophase band, the guard mother cells ofAvena were examined using a new procedure for anti-tubulin immunocytochemistry on large epidermal segments. We found that the interphase band (IMB) of transverse cortical microtubules present in these cells following asymmetric division is replaced after subsidiary cell formation by mesh-like to radial microtubules that extend throughout the cytoplasm. Many of the Mts are also grouped in bundles. Gradually, this intermediate array is succeeded by longitudinal elements of the PPB. Thus, preprophase band formation is accompanied by a 90° shift in Mt orientation, with a radial arrangement serving as an intermediate stage. The micrographs are most consistent with the rearrangement of intact Mts, although changes in Mt assembly are possible as well. The role of the IMB in guard mother cells is also discussed.Abbreviations GMC guard mother cell - IMB interphase microtubule band - Mt microtubule - PPB preprophase band  相似文献   

16.
Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin‐dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodelling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus‐end tracking proteins (+TIPs) in the co‐ordination of T. cruzi trypomastigote internalization and post‐entry events is reported. Acute silencing of CLASP1, a +TIP that participates in microtubule stabilization at the cell periphery, impairs trypomastigote internalization without diminishing the capacity for calcium‐regulated lysosome exocytosis. Subsequent fusion of the T. cruzi vacuole with host lysosomes and its juxtanuclear positioning are also delayed in CLASP1‐depleted cells. These post‐entry phenotypes correlate with a generalized impairment of minus‐end directed transport of lysosomes in CLASP1 knock‐down cells and mimic the effects ofdynactin disruption. Consistent with GSK3β acting as a negative regulator of CLASP function, inhibition of GSK3β activity enhances T. cruzi entry in a CLASP1‐dependent manner and expression of constitutively active GSK3β dampens infection. This study provides novel molecular insights into the T. cruzi infection process, emphasizing functional links between parasite‐elicited signalling, host microtubule plus‐end tracking proteins and dynein‐based retrograde transport. Highlighted in this work is a previously unrecognized role for CLASPs in dynamic lysosome positioning, an important aspect of the nutrient sensing response in mammalian cells.  相似文献   

17.
Summary Cortical microtubule arrays in the radish root hair were analyzed from reconstructions of serial ultra-thin sections in order to test extant hypotheses concerning the role of microtubules in the deposition of oriented microfibrils of cellulose. Passing away from the tip, root hairs exhibit a transition from random to oriented deposition of microfibrils at approximately 25 m. Along the root hair, passing back from the tip, the microtubules: a) increase in number to a plateau at 25 m; b) change their length profiles from approximately 60% less than 1 m long in the hair tip to approximately 40% less than 1 m long at 60 m; c) maintain a constant pattern of angular deviation from the long axis, which is similar to the deviation pattern of the oriented wall fibrils; d) maintain a constant (approximately 70% of tubules) close (within 50 nm) proximity to the plasma membrane (PM); e) maintain a low (approximately 20%) degree of inter-microtubule proximity (i.e., within 50 nm of one another); f) show evidence for some variable long range (>50 nm) association. Fixation with glutaraldehyde in a complete microtubule polymerization medium (MTPM), or pretreatment with cytochalasin B cause an approximate twofold increase in 1. the proportion of long microtubules in the tip region and 2. microtubules within 50 nm of one another. Fixation in incomplete MTPM (without GTP) produces results similar to phosphate buffer controls. Alternative explanations for these results are examined. A new hypothesis accounting for microtubule involvement in oriented microfibril deposition is described.  相似文献   

18.
Summary The ontogeny of the chemoreceptive sensilla in the labial palp-pit organ was studied in Pieris rapae by examining twelve successive stages between pupation and emergence of the imago, which takes a period of 160 h under the experimental conditions. Mitoses occur until 20 h after pupation. They lead to anlagen of sensilla, 91% of which are comprised of three sensory cells. However, two sensory cells degenerate in each sensillum during a period of 28 h. The same process occurs in anlagen with four sensory cells resulting in bicellular sensilla. Axons grow out only after the number of sensory cells has been reduced. Further consecutive steps in sensory cell differentiation are: (a) outgrowth of dendritic outer segment and dendrite sheath; (b) outgrowth of trichogen process and change in structure of elongating dendrite sheath; (c) deposition of cuticle and pore tubules in the pegs; (d) retraction of trichogen process; (e) increase in diameter of dendritic outer segment accompanied by increase of microtubule number and appearance of regularly spaced electron-dense bodies at tubular doublets; (f) branching of dendritic outer segment; and (g) transformation of the dendritic branches into curled lamellae and partial destruction of the dendrite sheath. The unique process of sensory cell degeneration is interpreted as an event that revokes a step towards a possible functional improvement of the labial palp-pit organ during further evolutionSupported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

19.
Summary The development and distribution of calcium oxalate crystals, stomates and hairs were studied in the first trifoliolate leaf ofRhynchosia caribaea (Leguminosae: Papilionoideae, Phaseoleae). Using light and transmission electron microscopy, the crystals were shown to occur in both bundle sheath and mesophyll cells. Crystal distribution and shapes are characteristic forRhynchosia. Crystals develop late in leaf development in contrast to the stomates and hairs. As these latter two structures decrease in number per unit area with leaf age, crystal number increases.  相似文献   

20.
Summary Initially non-polar protoplasts of the green algaMougeotia will regenerate to re-establish their original cylindrical cell shape. The orientation of the growth axis of regenerating protoplasts held in agarose was independent of both the direction of incident white light and gravity. Protoplasts elongated parallel to applied DC electric fields of approx. 0.2 Vcm–1 (1 mV/protoplast) and greater, with an increasing percentage oriented with increasing field strength. At the maximum field strength used (10 mV/cell), 53% of protoplasts were oriented within +- 10° of the 0/180° axis of the field. In untreated controls, the orientation of elongation was random. Protoplast survival was unaffected by field treatment. Some protoplasts (up to 37% in 10 mV/cell fields) formed outgrowths towards the cathode and occasionally towards the anode. Regenerating protoplasts in fields displayed the normal sequence of microtubule reorganization. This means that the positioning of the ordered symmetrical array of microtubules centred on two foci that appears within 3 to 4 h, and the subsequent organization of microtubules by 8 to 12 h into a band that intersects both foci and which is transverse to the axis of elongation (Galway and Hardham 1986), may be controlled by externally applied electric fields. In the region of this microtubule band, the applied field causes the plasma membrane to be stretched parallel to the field (Bryant and Wolfe 1987). We suggest that microtubules may become oriented perpendicular to the direction of field-induced membrane stretching, and that membrane stretching may be one of the orienting mechanisms for membrane-linked microtubules in elongating plant cells.Abbreviations PBS phosphate buffered saline - PMM protoplast maintenance medium - DMM dilute maintenance medium - MES 2(N-morpholino)ethanesulfonic acid - TRIS tris(hydroxymethyl)aminomethane - ANOVA analysis of variance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号