首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported on the development and use of synthetic hydrogel extracellular matrix (ECM) analogues that can be used to study the mechanisms of migration. These biomimetic hydrogels consist of bioinert poly(ethylene glycol) diacrylate derivatives with proteolytically degradable peptide sequences included in the backbone of the polymer and adhesion peptide sequences grafted into the network. Cells adhere to the hydrogel via interaction between the grafted adhesion ligands and receptors on the cell surface. The cells migrate through the three-dimensional system by secreting the appropriate proteolytic enzymes, which are involved in cell migration and are targeted to the peptide sequences incorporated in the backbone of the polymer. It was observed that cell migration has a biphasic dependence on adhesion ligand concentration, with optimal migration at intermediate ligand levels. In this study, we demonstrate that we can covalently attach epidermal growth factor (EGF) to PEG and graft them into the hydrogels. It was observed that EGF when tethered maintained mitogenic activity. It was also observed that fibroblast migration significantly increased in the presence of the grafted EGF through the collagenase-sensitive hydrogels. In addition, the increase in migration was found to be independent from the proliferative response of the cells. These synthetic ECM analogues allow one to systematically control identities and concentrations of biomolecules and are useful tools to study mechanisms of cell migration.  相似文献   

2.
Model systems mimicking the extracellular matrix (ECM) have greatly helped in quantifying cell migration in three dimensions and elucidated the molecular determinants of cellular motility in morphogenesis, regeneration, and disease progression. Here we tested the suitability of proteolytically degradable synthetic poly(ethylene glycol) (PEG)-based hydrogels as an ECM model system for cell migration research and compared this designer matrix with the two well-established ECM mimetics fibrin and collagen. Three-dimensional migration of dermal fibroblasts was quantified by time-lapse microscopy and automated single-cell tracking. A broadband matrix metalloproteinase (MMP) inhibitor and tumor necrosis factor-alpha, a potent MMP-inducer in fibroblasts, were used to alter MMP regulation. We demonstrate a high sensitivity of migration in synthetic networks to both MMP modulators: inhibition led to an almost complete suppression of migration in PEG hydrogels, whereas MMP upregulation increased the fraction of migrating cells significantly. Conversely, migration in collagen and fibrin proved to be less sensitive to the above MMP modulators, as their fibrillar architecture allowed for MMP-independent migration through preexisting pores. The possibility of molecularly recapitulating key functions of the natural extracellular microenvironment and the improved protease sensitivity makes PEG hydrogels an interesting model system that allows correlation between protease activity and cell migration.  相似文献   

3.
Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine‐PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine‐PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN–PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2‐kDa FN–PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN–PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.  相似文献   

4.
A simple, sequential approach for creation of hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels has been developed and characterized. The chemistry involves an initial step growth polymerization reaction between PEG-diacrylate and dithiothreitol (DTT) to form acrylate-terminated (-PEG-DTT-)n PEG chains, followed by photocross-linking to form a hydrogel network. Varying the extent of step growth polymerization prior to photocross-linking allowed for control over the equilibrium swelling ratio, degradation, and erosion of PEG hydrogels. Hydrogel degradability had a significant effect on behavior of human mesenchymal stem cells (hMSCs) encapsulated within PEG hydrogels, both in the presence and absence of an RGDSP cell adhesion ligand. In particular, enhanced network degradability resulted in enhanced hMSC viability and spreading during in vitro culture. Comparison of degradable and nondegradable hydrogels with similar physical properties (e.g., equilibrium swelling ratio) demonstrated that hMSC viability and spreading were dependent on network degradability. This study demonstrates that hydrolytically degradable PEG hydrogels can be formed via a sequential step growth polymerization and photocross-linking process and the resulting materials may serve as promising matrices for 3-dimensional stem cell culture and tissue engineering applications.  相似文献   

5.
The addition of one of several proteases to cultures of mouse erythroleukaemia (MEL) or human K-562 leukaemia cells can induce a substantial portion of the cells to undergo erythroid differentiation. This effect is due, at least in part, to the proteolytic action of these enzymes. The critical substrate(s) for this proteolytic action is not a component of the medium or a long-lived substance(s) released from the cells. In order to determine if the substrate(s) is located on the cell surface or intracellularly, a comparison of the ability of non-immobilized papain and immobilized papain (i.e. covalently linked to Sepharose beads which were larger than the cells) to induce MEL cell differentiation was undertaken. Both papain preparations induced the same level of differentiation. The proteolytic activity of the bead-linked papain remained associated with the beads. Therefore, proteases induce erythroid differentiation in these cells by acting proteolytically on a substrate(s) that is exterior to the cell.  相似文献   

6.
Angiogenesis is an important biological response known to be involved in many physiological and pathophysiological situations. Cellular responses involved in the formation of new blood vessels, such as increases in endothelial cell proliferation, cell migration, and the survival of apoptosis-inducing events, have been associated with vascular endothelial growth factor isoform 165 (VEGF(165)). Current research in the areas of bioengineering and biomedical science has focused on developing polyethylene glycol (PEG)-based systems capable of initiating and sustaining angiogenesis in vitro. However, a thorough understanding of how endothelial cells respond at the molecular level to VEGF(165) incorporated into these systems has not yet been established in the literature. The goal of the current study was to compare the upregulation of key intracellular proteins involved in angiogenesis in human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC) seeded on PEG hydrogels containing grafted VEGF(165) and adhesion peptides Arg-Gly-Asp-Ser (RGDS). Our data suggest that the covalent incorporation of VEGF(165) into PEG hydrogels encourages the upregulation of signaling proteins responsible for increases in endothelial cell proliferation, cell migration, and the survival after apoptosis-inducing events.  相似文献   

7.
Abstract The addition of one of several proteases to cultures of mouse erythroleukaemia (MEL) or human K-562 leukaemia cells can induce a substantial portion of the cells to undergo erythroid differentiation. This effect is due, at least in part, to the proteolytic action of these enzymes. The critical substrate(s) for this proteolytic action is not a component of the medium or a long-lived substance(s) released from the cells. In order to determine if the substrate(s) is located on the cell surface or intracellularly, a comparison of the ability of non-immobilized papain and immobilized papain (i.e. covalently linked to Sepharose beads which were larger than the cells) to induce MEL cell differentiation was undertaken. Both papain preparations induced the same level of differentiation. The proteolytic activity of the bead-linked papain remained associated with the beads. Therefore, proteases induce erythroid differentiation in these cells by acting proteolytically on a substrate(s) that is exterior to the cell.  相似文献   

8.
An elastase-specific fluorogenic substrate, 6-(N-carbo-benzoxy-L-alanyl-L-alanyl-L-alanylamido)-qu inoline, was synthesized and immobilized via the fluorophoric group to an alkylatable derivative of polyacrylamide microspheres. Upon hydrolysis by elastase, the proteolytic product of the reaction fluorescences with a characteristic greenish-yellow light corresponding to the presence of the 1-alkyl-6-aminoquinolinium ion. This method has been applied to detect the elastase activity released from monocytes grown on the microspheres. Because the fluorescent product is covalently attached to the microsphere and cannot diffuse away from the site of reaction, it is possible to identify individual cells releasing the proteinase molecules. These experiments demonstrate that covalently immobilized fluorogenic substrates can be used for direct visualization and quantitation of proteinase activity from individual cells in culture.  相似文献   

9.
The biological functions of matrix metalloproteinases (MMPs) extend beyond extracellular matrix degradation. Non-proteolytic activities of MMPs are just beginning to be understood. Herein, we evaluated the role of proMMPs in cell migration. Employing a Transwell chamber migration assay, we demonstrated that transfection of COS-1 cells with various proMMP cDNAs resulted in enhancement of cell migration. Latent MMP-2 and MMP-9 enhanced cell migration to a greater extent than latent MMP-1, -3, -11 and -28. To examine if proteolytic activity is required for MMP-enhanced cell migration, three experimental approaches, including fluorogenic substrate degradation assay, transfection of cells with catalytically inactive mutant MMP cDNAs, and addition of hydroxamic acid-derived MMP inhibitors, were employed. We demonstrated that the proteolytic activities of MMPs are not required for MMP-induced cell migration. To explore the mechanism underlying MMP-enhanced cell migration, structure-function relationship of MMP-9 on cell migration was evaluated. By using a domain swapping approach, we demonstrated that the hemopexin domain of proMMP-9 plays an important role in cell migration when examined by a transwell chamber assay and by a phagokinetic migration assay. TIMP-1, which interacts with the hemopexin domain of proMMP-9, inhibited cell migration, whereas TIMP-2 had no effect. Employing small molecular inhibitors, MAPK and PI3K pathways were found to be involved in MMP-9-mediated cell migration. In conclusion, we demonstrated that MMPs utilize a non-proteolytic mechanism to enhance epithelial cell migration. We propose that hemopexin homodimer formation is required for the full cell migratory function of proMMP-9.  相似文献   

10.
While biochemical and biomechanical cues are known to play important roles in directing stem cell differentiation, there remains little known regarding how these inextricably linked biological cues impact the differentiation fate of human marrow stromal cells (hMSCs). This study investigates the chondrogenic differentiation potential of hMSCs when encapsulated in a three dimensional (3D) hydrogel and exposed to a biochemical cue, chondroitin sulfate (ChS), a biomechanical cue, dynamic loading, and their combination. hMSCs were encapsulated in bioinert poly(ethylene glycol) (PEG) hydrogels only, PEG hydrogels modified with covalently incorporated methacrylated ChS and cultured under free swelling conditions or subjected to delayed intermittent dynamic loading for 2 weeks. The 3D hydrogel environment led to the expression of chondrogenic genes (SOX9) and proteins (aggrecan and collagen II), but also upregulated hypertrophic genes (RUNX2 and Col X mRNA) and proteins (collagen X), while the application of loading generally led to a downregulation in chondrogenic proteins (collagen II). The presence of ChS led to elevated levels of aggrecan, but also collagen I, protein expression and when combined with dynamic loading downregulated, but did not suppress, hypertrophic genes (Col X and RUNX2) and collagen I protein expression. Taken together, this study demonstrates that while the 3D environment induces early terminal differentiation during chondrogenesis of hMSCs, the incorporation of ChS into PEG hydrogels may slow the terminal differentiation process down the hypertrophic lineage particularly when dynamic loading is applied. Biotechnol. Bioeng. 2012; 109: 2671–2682. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Biomaterials that prevent nonspecific protein adsorption and cell adhesion are of high relevance for diverse applications in tissue engineering and diagnostics. One of the most widely applied materials for this purpose is Poly(ethylene glycol) (PEG). We have investigated how micrometer line topography and substrate elasticity act upon the antiadhesive properties of PEG-based hydrogels. In our studies we apply bulk hydrogel cross-linked from star-shaped poly(ethylene oxide-stat-propylene oxide) macromonomers. Substrate surfaces were topographically patterned via replica molding. Additionally, the mechanical properties were altered by variations in the cross-linking density. Surface patterns with dimensions in the range of the cells' own size, namely 10 μm wide grooves, induced significant cell adhesion and spreading on the Acr-sP(EO-stat-PO) hydrogels. In contrast, there was only little adhesion to smaller and larger pattern sizes and no adhesion at all on the smooth substrates, regardless the rigidity of the gel. The effect of varied substrate stiffness on cell behavior was only manifest in combination with topography. Softer substrates with line patterns lead to significantly higher cell adhesion and spreading than stiff substrates. We conclude that the physical and mechanical surface characteristics can eliminate the nonadhesive properties of PEG-based hydrogels to a large extent. This has to be taken into account when designing surfaces for biomedical application such as scaffolds for tissue engineering which rely on the inertness of PEG.  相似文献   

12.
Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G') achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material's adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials.  相似文献   

13.
An assay using fluorogenic peptides based on the monomer/excimer fluorescence features of pyrene was developed to measure the proteolytic activity of trypsin, a serine protease. Two pyrene moieties were incorporated into the respective N- and C-terminus of the peptides as (pyrene)-C-Xaa-C-(pyrene), where Xaa represents amino acid residues of 5-, 6-, 7-, or 8-mer containing the cleavage site of trypsin. The proteolytic cleavage of the substrates led to an increase in monomer fluorescence and a decrease in excimer fluorescence of pyrene. Kinetic parameters (k(cat) and K(m)) for the enzymatic hydrolysis of the substrates were successfully determined. The parameters are dependent on the chain length of the substrate and optimal catalytic activity was obtained with substrates that consisted of 9 or 10 amino acid residues. The present assay system is sensitive and the preparation of the substrate is very simple. We suggest that this method may be suitable for high-throughput screening and also applicable to the characterization of other proteases.  相似文献   

14.
Shih H  Lin CC 《Biomacromolecules》2012,13(7):2003-2012
Thiol-ene photoclick hydrogels have been used for a variety of tissue engineering and controlled release applications. In this step-growth photopolymerization scheme, four-arm poly(ethylene glycol) norbornene (PEG4NB) was cross-linked with dithiol containing cross-linkers to form chemically cross-linked hydrogels. While the mechanism of thiol-ene gelation was well described in the literature, its network ideality and degradation behaviors are not well-characterized. Here, we compared the network cross-linking of thiol-ene hydrogels to Michael-type addition hydrogels and found thiol-ene hydrogels formed with faster gel points and higher degree of cross-linking. However, thiol-ene hydrogels still contained significant network nonideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEG-norbornene macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, we found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network cross-linking. In an attempt to manipulate network cross-linking and degradation of thiol-ene hydrogels, we incorporated peptide cross-linkers with different sequences and characterized the hydrolytic degradation of these PEG-peptide hydrogels. In addition, we incorporated a chymotrypsin-sensitive peptide as part of the cross-linkers to tune the mode of gel degradation from bulk degradation to surface erosion.  相似文献   

15.
The formation of a microvasculature is regulated in large part by cell-cell interactions. Ephrins and their Eph receptors mediate cell adhesion, repulsion, and migration, all critical processes in angiogenesis. (1) Here we use a covalently immobilized ephrinA1, conjugated to poly(ethylene glycol), to induce vessel formation both in vitro and in vivo in poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Human umbilical vein endothelial cell (HUVEC) tubulogenesis in matrix metalloproteinase-sensitive hydrogels was visualized from 6 h to 7 days in response to three different concentrations of PEG-ephrinA1. The deposition of extracellular matrix proteins collagen IV and laminin that stabilize tubule formation were imaged, quantified, and found to be dependent on PEG-ephrinA1 concentration. To confirm the importance of the EphA2-ephrinA1 interaction in tubule formation, soluble EphA2 was used to disrupt the EphA2-ephrinA1 interaction between a coculture of HUVEC and human brain vascular pericyte cells. HUVECs seeded onto PEGDA hydrogels displayed a dose-dependent reduction in tubule formation in response to the soluble EphA2. Finally, hydrogels with releasable platelet-derived growth factor (PDGF), immobilized RGDS, and covalently immobilized PEG-ephrinA1 were implanted into the mouse cornea micropocket. These hydrogels induced a more robust vascular response with an increase in vessel density as compared with hydrogels with releasable PDGF alone. As such, PEG-ephrinA1 may represent a promising molecule to regulate cell adhesion and migration for formation of a microvasculature in tissue-engineered constructs.  相似文献   

16.
Porous hydrogels of poly(ethylene glycol) (PEG) have been shown to facilitate vascularized tissue formation. However, PEG hydrogels exhibit limited degradation under physiological conditions which hinders their ultimate applicability for tissue engineering therapies. Introduction of poly(L-lactic acid) (PLLA) chains into the PEG backbone results in copolymers that exhibit degradation via hydrolysis that can be controlled, in part, by the copolymer conditions. In this study, porous, PEG-PLLA hydrogels were generated by solvent casting/particulate leaching and photopolymerization. The influence of polymer conditions on hydrogel architecture, degradation and mechanical properties was investigated. Autofluorescence exhibited by the hydrogels allowed for three-dimensional, non-destructive monitoring of hydrogel structure under fully swelled conditions. The initial pore size depended on particulate size but not polymer concentration, while degradation time was dependent on polymer concentration. Compressive modulus was a function of polymer concentration and decreased as the hydrogels degraded. Interestingly, pore size did not vary during degradation contrary to what has been observed in other polymer systems. These results provide a technique for generating porous, degradable PEG-PLLA hydrogels and insight into how the degradation, structure, and mechanical properties depend on synthesis conditions.  相似文献   

17.
A method to simultaneously determine the relative numbers of live and dead cells in culture by introducing a combination of two fluorogenic substrates or a fluorogenic and a luminogenic protease substrate into the sample is described. The method is based on detection of differential ubiquitous proteolytic activities associated with intact viable cells and cells that have lost membrane integrity. A cell-permeable peptide aminofluorocoumarin substrate detects protease activity restricted to intact viable cells. Upon cell death, the viable cell protease marker becomes inactive. An impermeable peptide rhodamine 110 (or aminoluciferin) conjugated substrate detects protease activity from nonviable cells that have lost membrane integrity. The multiplex assay can detect 200 dead cells in a population of 10,000 viable cells. The protease substrate reagents do not damage viable cells over the course of the assay, thus the method can be multiplexed further with other assays in a homogeneous format. Ratiometric measurement of viable and dead cells in the same sample provides an internal control that can be used to normalize data from other cell-based assays.  相似文献   

18.
We describe the synthesis of a novel biotinylated nanotextured degradable hydrogel that can be rapidly surface engineered with a diverse range of biotinylated moieties. The hydrogel is synthesized by reacting methacrylated biotin-PEG with dimethacrylated P LA-b- PEG-b-P LA (LPLDMA, PEG = poly(ethylene glycol), PLA = poly(lactic acid)),or dimethacrylated PEG-b-P LA-b- PEG (PLPDMA). Methacrylated biotin-PEG is prepared by reacting biotin-PEG-OH with methacrylic anhydride. Biotin-PEG-OH is prepared by reacting alpha-hydroxy-omega-amine PEG with N-hydroxysuccinimide-biotin. Confirmation of the final product is determined using (1)H NMR and Fourier transform infrared spectroscopy (FTIR). The integrity and surface presentation of the biotin units is observed spectrophotometrically using the HABA/avidin assay. To produce nanostructured polymer topography, a self-assembling lyotropic liquid crystalline mesophase is used as a polymerization template, generating biotinylated hydrogels with highly organized lamellar matrix geometry. Traditionally processed isotropic hydrogels are used for comparison. Scanning electron microscopy shows that isotropic hydrogels have a smooth glassy appearance while lamellar templated hydrogels have defined surface topographical features that enhance preosteoblast human palatal mesenchymal cell (HEPM) attachment. Engineering the surfaces of the hydrogels with cell adhesive Arg-Gly-Asp (RGD) peptide sequences using the biotin-avidin interaction significantly enhances cell attachment. Surface engineering of cell adhesive peptides in conjunction with the lamellar template induced surface topography generates additive enhancements in cell attachment.  相似文献   

19.
We have engineered synthetic poly(ethylene glycol) (PEG)-based hydrogels as cell-ingrowth matrices for in situ bone regeneration. These networks contain a combination of pendant oligopeptide ligands for cell adhesion (RGDSP) and substrates for matrix metalloproteinase (MMP) as linkers between PEG chains. Primary human fibroblasts were shown to migrate within these matrices by integrin- and MMP-dependent mechanisms. Gels used to deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) to the site of critical- sized defects in rat crania were completely infiltrated by cells and were remodeled into bony tissue within five weeks. Bone regeneration was dependent on the proteolytic sensitivity of the matrices and their architecture. The cell-mediated proteolytic invasiveness of the gels and entrapment of rhBMP-2 resulted in efficient and highly localized bone regeneration.  相似文献   

20.
A new alkaline proteinase activity was identified in cell-free extracts of Trypanosoma cruzi epimastigotes on the basis of its ability to hydrolyze the fluorogenic substrate N-Z-Gly-Gly-Arg-AMC. The optimal activity was at pH 8.0. After a three step-chromatography procedure using two anionic columns (DEAE-Sepharose and Mono Q) and a chromatofocusing column (Mono P), the proteolytic activity was associated with a single 120 kDa protein and was called Tc 120 proteinase. The molecular mass of the proteinase was confirmed by direct visualization of the proteolytic activity using a fluorometric assay on SDS-PAGE. The Tc 120 proteinase which also cleaves N-Z-Arg-AMC, N-Z-Phe-Arg-AMC and N-glutaryl-Gly-Arg-AMC substrates, is a cysteine-type proteinase with an unusual low sensitivity to E-64.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号