首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that the hyperandrogenemia associated with polycystic ovary syndrome (PCOS) results from an intrinsic abnormality in ovarian theca cell steroidogenesis, we examined steroid hormone production, steroidogenic enzyme activity, and mRNA expression in normal and PCOS theca cells propagated in long-term culture. Progesterone (P4), 17alpha-hydroxyprogesterone (17OHP4), and testosterone (T) production per cell were markedly increased in PCOS theca cell cultures. Moreover, basal and forskolin-stimulated pregnenolone, P4, and dehydroepiandrosterone metabolism were increased dramatically in PCOS theca cells. PCOS theca cells were capable of substantial metabolism of precursors into T, reflecting expression of an androgenic 17beta-hydroxysteroid dehydrogenase. Forskolin-stimulated cholesterol side chain cleavage enzyme (CYP11A) and 17alpha-hydroxylase/17,20-desmolase (CYP17) expression were augmented in PCOS theca cells compared with normal cells, whereas no differences were found in steroidogenic acute regulatory protein mRNA expression. Collectively, these observations establish that increased CYP11A and CYP17 mRNA expression, as well as increased CYP17, 3beta-hydroxysteroid dehydrogenase, and 17beta-hydroxysteroid dehydrogenase enzyme activity per theca cell, and consequently increased production of P4, 17OHP4, and T, are stable properties of PCOS theca cells. These findings are consistent with the notion that there is an intrinsic alteration in the steroidogenic activity of PCOS thecal cells that encompasses multiple steps in the biosynthetic pathway.  相似文献   

2.
3.
Polycystic ovary syndrome (PCOS), characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin) on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound) were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS.  相似文献   

4.
We have investigated the involvement of the MAPK signaling pathway in increased androgen biosynthesis and CYP17 gene expression in women with polycystic ovary syndrome (PCOS). A comparison of MAPK kinase (MEK1/2) and ERK1/2 phosphorylation in propagated normal and PCOS theca cells, revealed that MEK1/2 phosphorylation was decreased more than 70%, and ERK1/2 phosphorylation was reduced 50% in PCOS cells as compared with normal cells. Infection with dominant-negative MEK1 increased CYP17 mRNA and dehydroepiandrosterone (DHEA) abundance, whereas constitutively active MEK1 reduced DHEA production and CYP17 mRNA abundance. Similarly, the MEK inhibitor, PD98059, increased CYP17 mRNA accumulation and CYP17 promoter activity to levels observed in PCOS cells. Remarkably, in theca cells maintained in the complete absence of insulin, ERK1/2 phosphorylation was decreased in PCOS theca cells as compared with normal theca cells, and CYP17 mRNA and DHEA synthesis were increased in PCOS theca cells. These studies demonstrate that in PCOS cells reduced levels of activated MEK1/2 and ERK1/2 are correlated with increased androgen production, irrespective of the insulin concentration. These findings implicate alterations in the MAPK pathway in the pathogenesis of excessive ovarian androgen production in PCOS.  相似文献   

5.
Polycystic ovary syndrome (PCOS) is a complex but frequently occurring endocrine abnormality. PCOS has become one of the leading causes of oligo-ovulatory infertility among premenopausal women. The definition of PCOS remains unclear because of the heterogeneity of this abnormality, but it is associated with insulin resistance, hyperandrogenism, obesity and dyslipidaemia. The main purpose of this study was to identify possible candidate genes involved in PCOS. Several genomic approaches, including linkage analysis and microarray analysis, have been used to look for candidate PCOS genes. To obtain a clearer view of the mechanism of PCOS, we have compiled data from microarray analyses. An extensive literature search identified seven published microarray analyses that utilized PCOS samples. These were published between the year of 2003 and 2007 and included analyses of ovary tissues as well as whole ovaries and theca cells. Although somewhat different methods were used, all the studies employed cDNA microarrays to compare the gene expression patterns of PCOS patients with those of healthy controls. These analyses identified more than a thousand genes whose expression was altered in PCOS patients. Most of the genes were found to be involved in gene and protein expression, cell signaling and metabolism. We have classified all of the 1081 identified genes as coding for either known or unknown proteins. Cytoscape 2.6.1 was used to build a network of protein and then to analyze it. This protein network consists of 504 protein nodes and 1408 interactions among those proteins. One hypothetical protein in the PCOS network was postulated to be involved in the cell cycle. BiNGO was used to identify the three main ontologies in the protein network: molecular functions, biological processes and cellular components. This gene ontology analysis identified a number of ontologies and genes likely to be involved in the complex mechanism of PCOS. These include the insulin receptor signaling pathway, steroid biosynthesis, and the regulation of gonadotropin secretion among others.  相似文献   

6.
Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.  相似文献   

7.
Cytochrome P450 17alpha-hydroxylase (CYP17) gene expression and androgen biosynthesis are persistently elevated in theca cells isolated from ovaries of women with polycystic ovary syndrome (PCOS). We previously reported that -235 to -109 bp of the CYP17 promoter confers increased CYP17 promoter function in PCOS theca cells. In this report, additional deletion and mutational analyses of the CYP17 promoter were performed to identify the sequences that contribute to increased CYP17 promoter function in PCOS theca cells. Results of these analyses established that augmented promoter function in PCOS theca cells results from preferentially increased basal regulation conferred by sequences between -188 and -147 bp of the CYP17 promoter. Scanning mutant analysis demonstrated that mutations within a 16-bp sequence, spanning -174 to -158 bp of the promoter, ablated increased basal CYP17 promoter function in PCOS theca cells. EMSA analysis demonstrated that the NF-1 family member, NF-1C, bound this sequence. Cotransfection of several NF-1C isoforms expressed in normal and PCOS cells repressed CYP17 promoter function. NF-1C protein and DNA binding were reduced in PCOS theca cell nuclear extracts, as compared with normal. Another NF-1C site between -102 and -90 bp of the promoter was also identified. However, mutation of this site had no effect on differential promoter function in PCOS theca cells. These studies demonstrate that 1) augmented CYP17 promoter function in PCOS theca cells results from increased basal regulation, and 2) diminished NF-1C-dependent repression may be one mechanism underlying increased basal CYP17 promoter activity and altered gene expression in PCOS theca cells.  相似文献   

8.
《Reproductive biology》2023,23(4):100797
The present study aimed to build a DHEA-induced polycystic ovary syndrome (PCOS) rat model to evaluate the potential mechanism of DHEA-induced AMH rise in these rat ovarian tissues. A total of 36 female 3-week-old rats were allocated into two groups at random. The control group received merely the same amount of sesame oil for 20 days while the experimental group received 0.2 mL of sesame oil Plus DHEA 6 mg/100 g daily. Both groups' vaginal opening times were noted, and vaginal smears were taken. By using RT-qPCR and Western blot, the mRNA and protein expression of AMH, GATA4, SF1, and SOX9 in the ovarian tissues of the two groups was investigated.The rats in the experimental group appeared to have obvious disorders of the estrus cycle, as evidenced by the ratio of estrus being significantly higher than that in the control group (P < 0.05); HE staining revealed that the ovarian volume, follicular vacuoles, and follicular lumen of the rats in the experimental group increased significantly.The ELISA results revealed that T and AMH in the experimental group were higher than those in the control group at day 15 and 20. AMH、GATA4 and SF1 mRNA and protein expression were higher in the experimental group than in the control group on day 15 and 20 (P < 0.05). On day 20, the experimental group outperformed the control group (P < 0.05). In the DHEA-induced PCOS rat model, androgen may have enhanced AMH expression via increasing the expression of genes associated to the AMH promoter binding site (GATA4, SF1, SOX9).  相似文献   

9.
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of reproductive age women. The syndrome is caused by a combination of environmental influences and genetic predisposition. Despite extensive efforts, the heritable factors contributing to PCOS development are not fully understood. The objective of this study was to test the hypothesis that genetic background contributes to the development of a PCOS-like reproductive and metabolic phenotype in mice exposed to excess DHEA during the pubertal transition. We tested whether the PCOS phenotype would be more pronounced on the diabetes-prone C57BL/6 background than the previously used strain, BALB/cByJ. In addition, we examined strain-dependent upregulation of the expression of ovarian and extra-ovarian candidate genes implicated in human PCOS, genes containing known strain variants, and genes involved with steroidogenesis or insulin sensitivity. These studies show that there are significant strain-related differences in metabolic response to excess androgen exposure during puberty. Additionally, our results suggest the C57BL/6J strain provides a more robust and uniform experimental platform for PCOS research than the BALB/cByJ strain.  相似文献   

10.
Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS.  相似文献   

11.
12.
13.
The pathophysiology of polycystic ovary syndrome (PCOS) is confusing until today as it is a multifactorial endocrine disorder. It is presented with altered gonadotropin levels, bulky multi-follicular ovaries, infertility, and obesity. This complex pathophysiology is linked with insulin resistance and hyperandrogenism. Hyperandrogenemia significantly contributes towards cosmetic anomalies including hirsutism, acne, and alopecia in the PCOS women. The preexisting insulin resistance in women with PCOS is likely to aggravate the increased levels of androgen. The review findings have shown that in the steroidogenic pathway, ovarian steroidogenesis patterns classify mainly towards the hypertrophy of theca cells along with alteration in the expression of key enzymes. The association of polymorphisms in genes encoding the process of an intricate cascade of steroidogenesis is delineated. The emergence of an unanimously accepted genetic marker for susceptible PCOS was affected based on inconsistent findings. The present study has provided a comprehensive summary of the impact of polymorphisms among the common androgen-related genes to govern the genetic predisposition.  相似文献   

14.
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women at reproductive age. However, the underlying pathogenic mechanisms have not been completely understood. Hyperandrogenism is an important clinic feature in patients with PCOS, suggesting its pathologic role in the development and progression of PCOS. However, the actual role of androgen and the related signals in PCOS and PCOS-related complications have not yet been clarified. In this review, we surveyed the origin and effects of androgen on PCOS and the related complications, highlighted the cellular signals affecting androgen synthesis and summarized the pathological processes caused by hyperandrogenism. Our review well reveals the important mechanisms referring the pathogenesis of PCOS and provides important clues to the clinic strategies in patients with PCOS.  相似文献   

15.
16.
17.
18.
The individual contributions of the three vertebrate GATA factors to endoderm formation have been unclear. Here we detail the early expression of GATA4, 5 and 6 in presumptive endoderm in Xenopus embryos and their induction of endodermal markers in presumptive ectoderm. Induction of HNF3beta by all three GATA factors was abolished when protein synthesis was inhibited, showing that these inductions are indirect. In contrast, whereas induction of Sox17alpha and HNF1beta by GATA4 and 5 was substantially reduced when protein synthesis was inhibited, induction by GATA6 was minimally affected, suggesting that GATA6 is a direct activator of these early endodermal genes. GATA4 induced GATA6 expression in the same assay and antisense morpholino oligonucleotides (MOs), designed to knock down translation of GATA6, blocked induction of Sox17alpha and HNF1beta by GATA4, suggesting that GATA4 induces these genes via GATA6 in this assay. All three GATA factors were induced by activin, although GATA4 and 6 required lower concentrations. GATA MOs inhibited Sox17alpha and HNF1beta induction by activin at low and high concentrations in the order: GATA6>GATA4>GATA5. Together with the timing of their expression and the effects of GATA MOs in vivo, these observations identify GATA6 as the predominant GATA factor in the maintenance of endodermal gene expression by TGFbeta signaling in gastrulating embryos. In addition, examination of gene expression and morphology in later embryos, revealed GATA5 and 6 as the most critical for the development of the gut and the liver.  相似文献   

19.
Wild RA 《Steroids》2012,77(4):295-299
Life-long apolipoprotein lipid metabolic dysfunction in women with PCOS exaggerates the risk for cardiovascular disease (CVD) with aging. The dysfunction has involved insulin resistance (IR), which occurs in most women with PCOS. Women with PCOS have androgen excess, IR, variable amounts of estrogen exposure, and many environmental factors, all of which can influence lipid metabolism. On average, women with PCOS were higher triglyceride [26.39 95% CI (17.24, 35.54)], lower HDL-cholesterol [6.41 95% CI (3.69, 9.14)], and higher non HDL cholesterol levels [18.82 95% CI (15.53, 22.11)] than their non-PCOS counterparts. They have higher ApoCIII/ApoCII ratios and higher ApoCI even if they are not obese. ApoC1 elevation in women with PCOS needs to be further evaluated as a marker of dysfunction and potential CVD risk. ApoB measurements track with non-HDL cholesterol as a surrogate for increased atherogenic circulating small LDL particles. Elevated triglycerides and waist circumference predict CVD risk and women with PCOS often have these phenotypes. Diet and exercise interventions followed by selective lipid lowering medications are encouraged to normalize the dyslipidemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号