首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin B(6) (VB6) functions as a cofactor of many diverse enzymes in amino acid metabolism. Three metabolic pathways for pyridoxal 5'-phosphate (PLP; the active form of VB6) are known: the de novo pathway, the salvage pathway, and the fungal type pathway. Most unicellular organisms and plants biosynthesize VB6 using one or two of these three biosynthetic pathways. However, animals such as insects and mammals do not possess any of the pathways and, thus, need to intake VB6 in their diet to survive. It is conceivable that breakdowns of these pathways occurred in the evolutionary lineages of insects and mammals, and one of the major reasons for this would be the loss of pertinent genes. We studied the evolution of VB6 biosynthesis from the view of the gain and loss of 10 pertinent genes in 122 species whose genome sequences were completely determined. The results revealed that each gene in the pathways was lost more than once in the entire evolutionary lineages of the 122 species. We also found the following three points regarding the evolution of PLP biosynthesis: (1) the breakdown of the PLP biosynthetic pathways occurred independently at least three times in animal lineages, (2) the de novo pathway was formed by the generation of pdxB in gamma-proteobacteria, and (3) the order of the gene loss in VB6 metabolism was conserved among different evolutionary lineages. These results suggest that the evolution of VB6 metabolism was subject to gains and frequent losses of related genes in the 122 species examined. This dynamic nature of the evolutionary changes must have been responsible for the breakdowns of the pathways, resulting in profound differentiation of heterotrophy among the species.  相似文献   

2.
Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. Richness of the olfactory repertoire depends on the diversity of receptors coded by homologous genes classified into four families: OR, TAAR, VR1, and VR2. Herein, we focus on the OR gene repertoire. While independent large contractions of the OR gene repertoire associated with ecological transitions have been found in mammals, little is known about the diversity of the OR gene repertoire and its evolution in teleost fishes, a group that includes more than 34,000 living species. We analyzed genomes of 163 species representing diversity in this large group. We found a large range of variation in the number of functional OR genes, from 15 in the Broad-nose Pipefish Syngnathus typhle and the Ocean Sunfish Mola mola, to 429 in the Zig-zag Eel Mastacembelus armatus. The number of OR genes was higher in species when a multilamellar olfactory rosette was present. Moreover, the number of lamellae was correlated with the richness of the OR gene repertoire. While a slow and balanced birth-and-death process generally drives the evolution of the OR gene repertoire, we inferred several episodes of high rates of gene loss, sometimes followed by large gains in the number of OR genes. These gains coincide with morphological changes of the olfactory organ and suggest a strong functional association between changes in the morphology and the evolution of the OR gene repertoire.  相似文献   

3.
Animals recognize their external world through the detection of tens of thousands of chemical odorants. Olfactory receptor (OR) genes encode proteins for detecting odorant molecules and form the largest multigene family in mammals. It is known that humans have fewer OR genes and a higher fraction of OR pseudogenes than mice or dogs. To investigate whether these features are human specific or common to all higher primates, we identified nearly complete sets of OR genes from the chimpanzee and macaque genomes and compared them with the human OR genes. In contrast to previous studies, here we show that the number of OR genes ( approximately 810) and the fraction of pseudogenes (51%) in chimpanzees are very similar to those in humans, though macaques have considerably fewer OR genes. The pseudogenization rates and the numbers of genes affected by positive selection are also similar between humans and chimpanzees. Moreover, the most recent common ancestor between humans and chimpanzees had a larger number of functional OR genes (>500) and a lower fraction of pseudogenes (41%) than its descendents, suggesting that the OR gene repertoires are in a phase of deterioration in both lineages. Interestingly, despite the close evolutionary relationship between the 2 species, approximately 25% of their functional gene repertoires are species specific due to massive gene losses. These findings suggest that the tempo of evolution of OR genes is similar between humans and chimpanzees, but the OR gene repertoires are quite different between them. This difference might be responsible for the species-specific ability of odor perception.  相似文献   

4.
Olfaction is essential for the survival of animals. Diverse odor molecules in the environment are detected by the olfactory receptors (ORs) in the olfactory epithelium of the nasal cavity. There are ~400 and ~1,000 OR genes in the human and mouse genomes, respectively, forming the largest multigene family in mammals. The relationships between ORs and odorants are multiple-to-multiple, which allows for discriminating almost unlimited number of different odorants by a combination of ORs. However, the OR-ligand relationships are still largely unknown, and predicting the quality of odor from its molecular structure is unsuccessful.Extensive bioinformatic analyses using the whole genomes of various organisms revealed a great variation in number of OR genes among species, reflecting the diversity of their living environments. For example, higher primates equipped with a well-developed vision system and dolphins that are secondarily adapted to the aquatic life have considerably smaller numbers of OR genes than most of other mammals do. OR genes are characterized by extremely frequent gene duplications and losses. The OR gene repertories are also diverse among human individuals, explaining the diversity of odor perception such as the specific anosmia.OR genes are present in all vertebrates. The number of OR genes is smaller in teleost fishes than in mammals, while the diversity is higher in the former than the latter. Because the genome of amphioxus, the most basal chordate species, harbors vertebrate-like OR genes, the origin of OR genes can be traced back to the common ancestor of the phylum Chordata.  相似文献   

5.
In order to study the relationships among mammalian alpha-globin genes, we have determined the sequence of the 3' flanking region of the human alpha 1 globin gene and have made pairwise comparisons between sequenced alpha-globin genes. The flanking regions were examined in detail because sequence matches in these regions could be interpreted with the least complication from the gene duplications and conversions that have occurred frequently in mammalian alpha-like globin gene clusters. We found good matches between the flanking regions of human alpha 1 and rabbit alpha 1, human psi alpha 1 and goat I alpha, human alpha 2 and goat II alpha, and horse alpha 1 and goat II alpha. These matches were used to align the alpha-globin genes in gene clusters from different mammals. This alignment shows that genes at equivalent positions in the gene clusters of different mammals can be functional or nonfunctional, depending on whether they corrected against a functional alpha-globin gene in recent evolutionary history. The number of alpha-globin genes (including pseudogenes) appears to differ among species, although highly divergent pseudogenes may not have been detected in all species examined. Although matching sequences could be found in interspecies comparisons of the flanking regions of alpha- globin genes, these matches are not as extensive as those found in the flanking regions of mammalian beta-like globin genes. This observation suggests that the noncoding sequences in the mammalian alpha-globin gene clusters are evolving at a faster rate than those in the beta-like globin gene clusters. The proposed faster rate of evolution fits with the poor conservation of the genetic linkage map around alpha-globin gene clusters when compared to that of the beta-like globin gene clusters. Analysis of the 3' flanking regions of alpha-globin genes has revealed a conserved sequence approximately 100-150 bp 3' to the polyadenylation site; this sequence may be involved in the expression or regulation of alpha-globin genes.   相似文献   

6.
Hahn MW  Han MV  Han SG 《PLoS genetics》2007,3(11):e197
Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and loss of genes at unprecedented resolution. We find large numbers of both gains and losses, with over 40% of all gene families differing in size among the Drosophila. Approximately 17 genes are estimated to be duplicated and fixed in a genome every million years, a rate on par with that previously found in both yeast and mammals. We find many instances of extreme expansions or contractions in the size of gene families, including the expansion of several sex- and spermatogenesis-related families in D. melanogaster that also evolve under positive selection at the nucleotide level. Newly evolved gene families in our dataset are associated with a class of testes-expressed genes known to have evolved de novo in a number of cases. Gene family comparisons also allow us to identify a number of annotated D. melanogaster genes that are unlikely to encode functional proteins, as well as to identify dozens of previously unannotated D. melanogaster genes with conserved homologs in the other Drosophila. Taken together, our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this genomic revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species.  相似文献   

7.
Grus WE  Zhang J 《Gene》2004,340(2):303-312
Pheromones are used by individuals of the same species to elicit behavioral or physiological changes, and they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. VNO pheromone receptors are encoded by the V1r and V2r gene superfamilies in mammals. A comparison of the V1r and V2r repertoires between closely related species can provide significant insights into the evolutionary genetic mechanisms responsible for species-specific pheromone communications. A total of 137 putatively functional V1r genes of 12 families were previously identified from the mouse genome. We report the identification of 95 putatively functional V1r genes from the draft rat genome sequence. These genes map primarily to four blocks in two chromosomes. The rat V1r genes can be phylogenetically grouped into 10 families, which are shared with mouse, and 2 new families, which are rat-specific. Even in many shared families, gene numbers differ between the two species, apparently due to frequent gene duplication and pseudogenization after the separation of the two species. Molecular dating suggests that most of the rat V1r families emerged before or during the radiation of mammalian orders, but many duplications within families occurred as recently as in the past 10 million years (MY). Our results show that the evolution of the V1r repertoire is characterized by exceptionally fast gene turnover via gains and losses of individual genes, suggesting rapid and substantial changes in pheromone communication between species.  相似文献   

8.
The olfactory receptor (OR) subgenome harbors the largest known gene family in mammals, disposed in clusters on numerous chromosomes. We have carried out a comparative evolutionary analysis of the best characterized genomic OR gene cluster, on human chromosome 17p13. Fifteen orthologs from chimpanzee (localized to chromosome 19p15), as well as key OR counterparts from other primates, have been identified and sequenced. Comparison among orthologs and paralogs revealed a multiplicity of gene conversion events, which occurred exclusively within OR subfamilies. These appear to lead to segment shuffling in the odorant binding site, an evolutionary process reminiscent of somatic combinatorial diversification in the immune system. We also demonstrate that the functional mammalian OR repertoire has undergone a rapid decline in the past 10 million years: while for the common ancestor of all great apes an intact OR cluster is inferred, in present-day humans and great apes the cluster includes nearly 40% pseudogenes.  相似文献   

9.
The relaxin gene family is a group of genes involved in different physiological roles, most of them related to reproduction. In vertebrates the genes in this family are located in three separate chromosomal locations, and have been called relaxin family locus (RFL) A, B, and C. Among mammals the RFLA and RFLC are the most conserved as no gene copy-number variation has been observed thus far. The RFLB locus is also conserved on most mammals other than primates, where there are several gene gains and losses. Interestingly, the relaxin gene found on the RFLB locus in the European rabbit has acquired a novel role. In addition to the classical reproductive roles, this gene is expressed in tracheobronchial epithelial cells and its expression has been linked to squamous differentiation. We reconstructed the evolutionary history of the European rabbit RFLB locus using the tools of comparative genomics and molecular evolution. We found that the European rabbit possess a RFLB locus which is unique among mammals in that there are five tandemly arranged relaxin gene copies, which contrast with the single relaxin copy gene found in most mammals. In addition we also found that the ancestral pre-duplication gene was subject to the action of positive selection, and several amino acid sites were identified under the action of natural selection including the sites B12 and B13 which are part of the receptor recognition and binding site.  相似文献   

10.
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.  相似文献   

11.
The mammalian sense of smell is governed by the largest gene family, which encodes the olfactory receptors (ORs). The gain and loss of OR genes is typically correlated with adaptations to various ecological niches. Modern humans have 853 OR genes but 55% of these have lost their function. Here we show evidence of additional OR loss of function in the Neanderthal and Denisovan hominin genomes using comparative genomic methodologies. Ten Neanderthal and 8 Denisovan ORs show evidence of loss of function that differ from the reference modern human OR genome. Some of these losses are also present in a subset of modern humans, while some are unique to each lineage. Morphological changes in the cranium of Neanderthals suggest different sensory arrangements to that of modern humans. We identify differences in functional olfactory receptor genes among modern humans, Neanderthals and Denisovans, suggesting varied loss of function across all three taxa and we highlight the utility of using genomic information to elucidate the sensory niches of extinct species.  相似文献   

12.
On the incidence of intron loss and gain in paralogous gene families   总被引:3,自引:0,他引:3  
Understanding gene duplication and gene structure evolution are fundamental goals of molecular evolutionary biology. A previous study by Babenko et al. (2004. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res. 32:3724-3733) employed Dollo parsimony to infer spliceosomal intron losses and gains in paralogous gene families and concluded that there was a general excess of gains over losses. This result contrasts with patterns in orthologous genes, in which most lineages show an excess of intron losses over gains, suggesting the possibility of fundamentally different modes of intron evolution between orthologous and paralogous genes. We further studied the data and found a low level of intron position conservation with outgroups, and this led to problems with using Dollo parsimony to analyze the data. Statistical reanalysis of the data suggests, instead, that intron losses have outnumbered intron gains in paralogous gene families.  相似文献   

13.
The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are used.  相似文献   

14.
Kondo R  Kaneko S  Sun H  Sakaizumi M  Chigusa SI 《Gene》2002,282(1-2):113-120
Vertebrate olfactory receptors (OR) exists as the largest multigene family, scattered throughout the genome in clusters. Studies have shown that different animals possess remarkably diverse set of OR genes to recognize diverse odor molecules. In order to examine the evolutionary process of OR diversification, we examined three OR gene subfamilies from Japanese medaka fish (seven lines sampled from four populations). For each subfamily, the sequences of ancestral genes were inferred based on distance method. Examination of d(N)/d(S) ratios for each branch of phylogenetic trees suggested that purifying selection is the major force of evolution in medaka OR genes. However, for the mfOR1 and mfOR2 paralogous gene pairs, a nonrandom distribution of fixed amino acid changes and the d(N)>d(S) in a branch suggested that diversifying selection occurred after gene duplication. The fixed amino acid changes were observed in the third, fifth and sixth transmembrane domains, which has been predicted to serve as a ligand-binding pocket in a structural model. Compatibility test suggested that interlocus recombinations involving the fourth transmembrane domain occurred between the mfOR1 and mfOR2 gene pairs. The pattern of nucleotide substitutions in other OR genes agrees with the hypothesis that a limited number of amino acid residues are involved in odorant binding. Such comparative analyses of paralogous OR genes should provide bases for understanding the evolution, the structure, and the functional specificity of OR genes.  相似文献   

15.

Background

Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task.

Results

We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs). We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes) of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains). We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain) are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA) of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties indicates that, even with a gain penalty of 1 (equal weights assigned to a gain and a loss), the set of 572 genes assigned to LUCA might be nearly sufficient to sustain a functioning organism. Under this gain penalty value, the numbers of horizontal gene transfer and gene loss events are nearly identical. This result holds true for two alternative topologies of the species tree and even under random shuffling of the tree. Therefore, the results seem to be compatible with approximately equal likelihoods of HGT and gene loss in the evolution of prokaryotes.

Conclusions

The notion that gene loss and HGT are major aspects of prokaryotic evolution was supported by quantitative analysis of the mapping of the phyletic patterns of COGs onto a hypothetical species tree. Algorithms were developed for constructing parsimonious evolutionary scenarios, which include gene loss and gain events, for orthologous gene sets, given a species tree. This analysis shows, contrary to expectations, that the number of predicted HGT events that occurred during the evolution of prokaryotes might be approximately the same as the number of gene losses. The approach to the reconstruction of evolutionary scenarios employed here is conservative with regard to the detection of HGT because only patterns of gene presence-absence in sequenced genomes are taken into account. In reality, horizontal transfer might have contributed to the evolution of many other genes also, which makes it a dominant force in prokaryotic evolution.
  相似文献   

16.
The olfactory receptor (OR) genes constitute the largest gene family in mammalian genomes. Humans have >1,000 OR genes, of which only ~40% have an intact coding region and are therefore putatively functional. In contrast, the fraction of intact OR genes in the genomes of the great apes is significantly greater (68%–72%), suggesting that selective pressures on the OR repertoire vary among these species. We have examined the evolutionary forces that shaped the OR gene family in humans and chimpanzees by resequencing 20 OR genes in 16 humans, 16 chimpanzees, and one orangutan. We compared the variation at the OR genes with that at intergenic regions. In both humans and chimpanzees, OR pseudogenes seem to evolve neutrally. In chimpanzees, patterns of variability are consistent with purifying selection acting on intact OR genes, whereas, in humans, there is suggestive evidence for positive selection acting on intact OR genes. These observations are likely due to differences in lifestyle, between humans and great apes, that have led to distinct sensory needs.  相似文献   

17.
We suggest an extension of connexin orthology relationships across the major vertebrate lineages. We first show that the conserved domains of mammalian connexins (encoding the N-terminus, four transmembrane domains and two extracellular loops) are subjected to a considerably more strict selection pressure than the full-length sequences or the variable domains (the intracellular loop and C-terminal tail). Therefore, the conserved domains are more useful for the study of family relationships over larger evolutionary distances. The conserved domains of connexins were collected from chicken, Xenopus tropicalis, zebrafish, pufferfish, green spotted pufferfish, Ciona intestinalis and Halocynthia pyriformis (two tunicates). A total of 305 connexin sequences were included in this analysis. Phylogenetic trees were constructed, from which the orthologies and the presumed evolutionary relationships between the sequences were deduced. The tunicate connexins studied had the closest, but still distant, relationships to vertebrate connexin 36, 39.2, 43.4, 45 and 47. The main structure in the connexin family known from mammals pre-dates the divergence of bony fishes, but some additional losses and gains of connexin sequences have occurred in the evolutionary lineages of subsequent vertebrates. Thus, the connexin gene family probably originated in the early evolution of chordates, and underwent major restructuring with regard to gene and subfamily structures (including the number of genes in each subfamily) during early vertebrate evolution.  相似文献   

18.
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.  相似文献   

19.
20.
Zhou L  Li-Ling J  Huang H  Ma F  Li Q 《Genomics》2008,91(2):129-141
Kininogens, the precursors of bradykinins, vary extremely in both structure and function among different taxa of animals, in particular between mammals and amphibians. This includes even the most conserved bradykinin domain in terms of biosynthesis mode and structure. To elucidate the evolutionary dynamics of kininogen genes, we have identified 19 novel amino acid sequences from EST and genomic databases (for mammals, birds, and fishes) and explored their phylogenetic relationships using combined amino acid sequence and gene structure as markers. Our results show that there were initially two paralogous kininogen genes in vertebrates. During their evolution, the original gene was saved with frequent multiplication in amphibians, but lost in fishes, birds, and mammals, while the novel gene was saved with multiple functions in fishes, birds, and mammals, but became a pseudogene in amphibians. We also propose that the defense mechanism against specific predators in amphibian skin secretions has been bradykinin receptor dependent. Our findings may provide a foundation for identification and structural, functional, and evolutionary analyses of more kininogen genes and other gene families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号