首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wolbachia is a widespread group of intracellular bacteria commonly found in arthropods. In many insect species, Wolbachia induce a cytoplasmic mating incompatibility (CI). If different Wolbachia infections occur in the same host species, bidirectional CI is often induced. Bidirectional CI acts as a postzygotic isolation mechanism if parapatric host populations are infected with different Wolbachia strains. Therefore, it has been suggested that Wolbachia could promote speciation in their hosts. In this article we investigate theoretically whether Wolbachia-induced bidirectional CI selects for premating isolation and therefore reinforces genetic divergence between parapatric host populations. To achieve this we combined models for Wolbachia dynamics with a well-studied reinforcement model. This new model allows us to compare the effect of bidirectional CI on the evolution of female mating preferences with a situation in which postzygotic isolation is caused by nuclear genetic incompatibilities (NI). We distinguish between nuclear incompatibilities caused by two loci with epistatic interactions, and a single locus with incompatibility among heterozygotes in the diploid phase. Our main findings are: (1) bidirectional CI and single locus NI select for premating isolation with a higher speed and for a wider parameter range than epistatic NI; (2) under certain parameter values, runaway sexual selection leads to the increase of an introduced female preference allele and fixation of its preferred male trait allele in both populations, whereas under others it leads to divergence in the two populations in preference and trait alleles; and (3) bidirectional CI and single locus NI can stably persist up to migration rates that are two times higher than seen for epistatic NI. The latter finding is important because the speed with which mutants at the preference locus spread increases exponentially with the migration rate. In summary, our results show that bidirectional CI selects for rapid premating isolation and so generally support the view that Wolbachia can promote speciation in their hosts.  相似文献   

2.
Wolbachia are intracellular, maternally inherited bacteria that are widespread among arthropods and commonly induce a reproductive incompatibility between infected male and uninfected female hosts known as unidirectional cytoplasmic incompatibility (CI). If infected and uninfected populations occur parapatrically, CI acts as a post-zygotic isolation barrier. We investigate the stability of such infection polymorphisms in a mathematical model with two populations linked by migration. We determine critical migration rates below which infected and uninfected populations can coexist. Analytical solutions of the critical migration rate are presented for mainland-island models. These serve as lower estimations for a more general model with two-way migration. The critical migration rate is positive if either Wolbachia causes a fecundity reduction in infected female hosts or its transmission is incomplete, and is highest for intermediate levels of CI. We discuss our results with respect to local adaptations of the Wolbachia host, speciation, and pest control.  相似文献   

3.
Cytoplasmic incompatibility (CI) induced by intracellular bacteriais a possible mechanism for speciation. Growing empirical evidencesuggests that bacteria of the group Wolbachia may indeed actas isolating factors in recent insect speciation. Wolbachiaare cytoplasmically transmitted and can cause uni- or bidirectionalCI. We present a mainland-island model to investigate how muchimpact Wolbachia can have on genetic divergence between populations.In the first scenario we assume that the island population hasdiverged at a selected locus and ask whether genetic divergencewill be maintained after introduction of migration from themainland. In the second we explore whether divergence will originateunder migration. For simplicity, the host organisms are modeledas haploid sexuals. Simulations show that if each populationis initially infected with a different strain of Wolbachia,then higher levels of divergence occur at the locally selectedlocus than in the absence of Wolbachia. A weaker effect is seenwhen there is only unidirectional CI caused by a single strainof Wolbachia on the island. CI increases divergence becauseit reduces effective migration between mainland and island.Migrants suffer from being confronted with the wrong CI systemand this also applies to their matrilineal descendants. Moreover,there is a strong linkage disequilibrium between host genotypeand infection state, which helps to maintain Wolbachia differencesbetween the populations in the face of migration A sex biasin migration can either increase or decrease the effect of Wolbachiaon divergence. Results support the view that Wolbachia has thepotential for increasing divergence between populations andthus could enhance probabilities of speciation.  相似文献   

4.
Wolbachia are intracellular bacteria that cause various reproduction alterations in their hosts, including cytoplasmic incompatibility (CI), an incompatibility between sperm and egg that typically results in embryonic death. We investigate theoretically the effects of Wolbachia-induced bidirectional CI on levels of divergence between two populations, where there is migration in both directions and differential selection at a single locus. The main findings are as follows: Wolbachia differences in the two populations are maintained up to a threshold migration rate, above which the system collapses to a single Wolbachia type; differential selection at a nuclear locus increases the threshold migration rate below which Wolbachia polymorphisms are maintained; Wolbachia differences between the populations enhance their genetic divergence at the selected locus by reducing the "effective migration rate," and even moderate levels of CI can cause large population differences in allele frequencies; and asymmetric CI can induce strong asymmetries in effective migration rate and dramatically alter the pattern of genetic divergence compared with the No Wolbachia situation. We derive an analytical approximation for the effective migration rate, which matches the simulation results for most parameter values. These results generally support the view that CI Wolbachia can contribute to genetic divergence between populations.  相似文献   

5.
Raychoudhury R  Werren JH 《Heredity》2012,108(2):105-114
Wolbachia are the most abundant maternally inherited endosymbionts of insects and cause various reproductive alterations in their hosts. One such manipulation is cytoplasmic incompatibility (CI), which is a sperm-egg incompatibility typically resulting in zygotic death. Nasonia longicornis (Hymenoptera: Pteromalidae) has an A supergroup and two closely related B supergroup Wolbachia infections. The B supergroup bacteria co-diverged in this host genus. Both triple (wNlonAwNlonB1wNlonB2) and double infections (wNlonAwNlonB1, wNlonAwNlonB2) have been obtained from the field. In the present study, CI was determined among the three Wolbachia types in different host genetic backgrounds. Results show that host genetic background determines whether bidirectional CI or unidirectional CI occurs between the two closely related B group Wolbachia. Results show that the wNlonB1-infected males are bidirectionally incompatible with wNlonB2 in their 'native' nuclear genetic background, whereas wNlonB1 males are compatible with wNlonB2 in two other N. longicornis genetic backgrounds, resulting in unidirectional CI. In contrast, wNlonB2-infected males are incompatible with wNlonB1 females in all three host genetic backgrounds. These changes in incompatibility are not due to the loss of the bacteria. We hypothesize that a repressor gene for sperm modification by wNlonB1 is segregating in N. longicornis populations. The relevance of these findings to the potential role of Wolbachia in host-reproductive divergence and speciation is discussed.  相似文献   

6.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

7.
Maroja LS  Clark ME  Harrison RG 《Heredity》2008,101(5):435-444
Wolbachia are cytoplasmically inherited alpha-proteobacteria that can cause cytoplasmic incompatibility (CI) in insects. This incompatibility between sperm and egg is evident when uninfected females mate with infected males. Wolbachia-driven reproductive incompatibilities are of special interest because they may play a role in speciation. However, the presence of Wolbachia does not always imply incompatibility. The field crickets Gryllus firmus and G. pennsylvanicus exhibit a very clear unidirectional incompatibility and have been cited as a possible example of Wolbachia-induced CI. Here, we conduct curing experiments, intra- and interspecific crosses, cytological examination of Wolbachia in testes and Wolbachia quantifications through real-time PCR. All of our data strongly suggest that Wolbachia are not involved in the reproductive incompatibility between G. firmus and G. pennsylvanicus.  相似文献   

8.
Wolbachia are widespread cytoplasmically inherited bacteria that induce various reproductive alterations in host arthropods, including cytoplasmic incompatibility (CI), an incompatibility between sperm and egg that typically results in embryonic death. CI has been invoked as a possible mechanism for reproductive isolation and speciation in arthropods, by restricting gene flow and promoting maintenance (and evolution) of genetic divergence between populations. Here we investigate patterns of Wolbachia infection and nuclear and mitochondrial differentiation in geographical populations of the birdnest blowfly Protocalliphora sialia. Blowflies in western North America are infected with two A-group Wolbachia, with some individuals singly and others doubly infected. Individuals in eastern North America mostly show single infections with a B-group Wolbachia. Populations in the Midwest are polymorphic for infections and show A- or B-group infection. There is a low level of mitochondrial divergence and perfect concordance of mitochondrial haplotype with infection type, suggesting that two Wolbachia-associated selective sweeps of the mitochondrion have occurred in this species. Amplified fragment length polymorphism analysis of nuclear genetic variation shows genetic differentiation between the eastern-Midwestern and western populations. Both Midwestern and eastern flies infected with A-Wolbachia show eastern nuclear genetic profiles. Current results therefore suggest that Wolbachia has not acted as a major barrier to gene flow between western and eastern-Midwestern populations, although some genetic differentiation between A-Wolbachia infected and B-Wolbachia infected individuals in eastern-Midwestern populations cannot be ruled out.  相似文献   

9.
Wolbachia pipientis is a bacterium that induces cytoplasmic incompatibility (CI), the phenomenon in which infected males are reproductively incompatible with uninfected females. CI spreads in a population of hosts because it reduces the fitness of uninfected females relative to infected females. CI encompasses two steps: modification (mod) of sperm of infected males and rescuing (resc) of these chromosomes by Wolbachia in the egg. Infections associated with CI have mod+ resa+ phenotypes. However, mod- resc+ phenotypes also exist; these do not result in CI. Assuming mod/resc phenotypes are properties of the symbiont, theory predicts that mod- resc+ infections can only spread in a host population where a mod+ resc+ infection already occurs. A mod- resc+ infection spreads if the cost it imposes on the infected females is lower than the cost inflicted by the resident (mod+ resc+) infection. Furthermore, introduction of a mod- Wolbachia eventually drives infection to extinction. The uninfected population that results can be recolonized by a CI-causing Wolbachia. Here, we investigated whether variability for induction of CI was present in two Tetranychus urticae populations. In one population all isofemale lines tested were mod-. In the other, mod+ resc+ and mod- resc+ isofemale lines coexisted. We found no evidence for a cost difference to females expressing either type (mod-/-). Infections in the two populations could not be distinguished based on sequences of two Wolbachia genes. We consider the possibility that mod- is a host effect through a population dynamics model. A mod- host allele leads to infection extinction in the absence of fecundity differences. Furthermore, the uninfected population that results is immune to reestablishment of the (same) CI-causing Wolbachia.  相似文献   

10.
Gotoh T  Noda H  Fujita T  Iwadate K  Higo Y  Saito S  Ohtsuka S 《Heredity》2005,94(2):237-246
Maternally transmitted bacteria of the genus Wolbachia are obligate, intracellular symbionts that are responsible for cytoplasmic incompatibility in a wide range of arthropods such as insects and mites. Spider mites often show uni- and bidirectional incompatibilities among populations with and without Wolbachia. Therefore, we surveyed the presence of Wolbachia by PCR and then conducted crossing experiments among 25 populations of Panonychus mori to determine how Wolbachia are related to the incompatibility in this species. Five out of the 25 populations were infected with Wolbachia. These five populations were treated with an antibiotic (rifampicin) to eliminate Wolbachia. We carried out round-robin crosses among 20 Wolbachia-uninfected populations, five infected populations and five rifampicin-treated populations (30 x 30=900 crosses in total). Incompatibility among P. mori populations was caused by Wolbachia infection, nuclear-cytoplasmic interactions or nuclear-nuclear interactions. Wolbachia-mediated incompatibility was observed in crosses between uninfected females and infected males or between females and males harboring different Wolbachia strains. Nuclear-cytoplasmic interactions may be responsible for the unidirectional incompatibility in crosses between the two northern populations and one of the southern populations. Bidirectional incompatibility caused by nuclear-nuclear interactions was observed in 99 combinations of interpopulation crosses (99/300=0.33). Although no geographical trends were detected in the distribution of bidirectionally compatible populations, the results reveal a genetic divergence among P. mori populations.  相似文献   

11.
共生菌Wolbachia引起宿主细胞质不亲和的研究进展   总被引:1,自引:0,他引:1  
Wolbachia 是一类广泛存在于节肢动物以及线虫体内细胞质中呈母系遗传的共生细菌,能够在宿主中产生细胞质不亲和、孤雌生殖、雌性化及杀雄等多种生殖调控作用,其中细胞质不亲和是指被 Wolbachia 感染的雄性个体与未感染的雌性个体(单向不亲和),或者感染不同株系 Wolbachia 的雌性个体(双向不亲和)交配后不能或很少产生后代,或者后代偏雄性的现象。细胞质不亲和作用使感染的雌性个体在种群中具有很大的生殖优势,凭借这种生殖优势,Wolbachia 能够迅速在宿主种群中扩张。细胞质不亲和的机理探索主要集中在细胞学水平上,其中广为接受的精子“修饰”和“拯救”理论认为,精巢中的 Wolbachia 能够修饰宿主的精细胞,使其不能和卵细胞正常融合,但是当母本感染相同的 Wolbachia 时,就能够将“修饰”过的精子细胞“拯救”过来,使其恢复与卵细胞的正常融合。而分子机理上的探索也开始在转录组、基因组和miRNA水平上对部分昆虫展开了研究。影响细胞质不亲和的因素有很多,包括宿主遗传背景、 Wolbachia 株系、Wolbachia 基因型、共生菌密度(浓度、滴度)、雄虫年龄、环境因素以及共生菌在宿主生殖组织的分布等。近年来,人类也应用细胞质不亲和控制害虫(主要是蚊虫)和人类疾病,取得了较好的进展。  相似文献   

12.
Kang L  Ma X  Cai L  Liao S  Sun L  Zhu H  Chen X  Shen D  Zhao S  Li C 《Heredity》2003,90(1):71-76
Wolbachia are maternally inherited, intracellular alpha-proteobacteria that infect a wide range of arthropods. They manipulate the reproduction of hosts to facilitate their spread into host populations, through ways such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. The influence of Wolbachia infection on host populations has attracted considerable interest in their possible role in speciation and as a potential agent of biological control. In this study, we used both microinjection and nested PCR to show that the Wolbachia naturally infecting Drosophila simulans can be transferred into a naturally Wolbachia-infected strain of the small brown planthopper Laodelphax striatellus, with up to 30% superinfection frequency in the F(12) generation. The superinfected males of L. striatellus showed unidirectional CI when mated with the original single-infected females, while superinfected females of L. striatellus were compatible with superinfected or single-infected males. These results are, to our knowledge, the first to establish a superinfected horizontal transfer route for Wolbachia between phylogenetically distant insects. The segregation of Wolbachia from superinfected L. striatellus was observed during the spreading process, which suggests that Wolbachia could adapt to a phylogenetically distant host with increased infection frequency in the new host population; however, it would take a long time to establish a high-frequency superinfection line. This study implies a novel way to generate insect lines capable of driving desired genes into Wolbachia-infected populations to start population replacement.  相似文献   

13.
Wolbachiaare intracellular bacteria which are very widely distributed among arthropods. In many insect species Wolbachiaare known to induce cytoplasmic mating incompatibility (CI). It has been suggested that Wolbachiacould promote speciation in their hosts if parapatric host populations are infected with two different Wolbachiastrains causing bidirectional mating incompatibilities. A necessary condition for this speciation scenario to work is that the two Wolbachiastrains can stably coexist. The following study investigates this problem analysing a mathematical model with two host populations and migration between them. We show that the stability of bidirectional CI can be fully described in terms of a critical migration rate which is defined as the highest migration below which a stable coexistence of two Wolbachiastrains is possible. For some special cases we could derive analytical solutions for the critical migration rate; for the general case estimations of the critical migration rate are given. Our main finding is that bidirectional CI can stably persist in the face of high migration and can be as high as over 15% per generation for CI levels observed in nature. These results have implications for the potential of Wolbachiato promote genetic divergence and speciation in their hosts.  相似文献   

14.
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.  相似文献   

15.
Wolbachia bacteria are transmitted from mother to offspring via the cytoplasm of the egg. When mated to males infected with Wolbachia bacteria, uninfected females produce unviable offspring, a phenomenon called cytoplasmic incompatibility (CI). Current theory predicts that ‘sterilization’ of uninfected females by infected males confers a fitness advantage to Wolbachia in infected females. When the infection is above a threshold frequency in a panmictic population, CI reduces the fitness of uninfected females below that of infected females and, consequently, the proportion of infected hosts increases. CI is a mechanism that benefits the bacteria but, apparently, not the host. The host could benefit from avoiding incompatible mates. Parasite load and disease resistance are known to be involved in mate choice. Can Wolbachia also be implicated in reproductive behaviour? We used the two‐spotted spider mite – Wolbachia symbiosis to address this question. Our results suggest that uninfected females preferably mate to uninfected males while infected females aggregate their offspring, thereby promoting sib mating. Our data agrees with other results that hosts of Wolbachia do not necessarily behave as innocent bystanders – host mechanisms that avoid CI can evolve.  相似文献   

16.
Wolbachia诱导胞质不亲和(cytoplasmic incompatibility, CI)是对寄主的生殖调控中最常见的一种方式,在不同种群中CI表达的差异较大。以二斑叶螨Tetranychus urticae辽宁兴城(LN)和江苏徐州(JS)两个地理种群为实验材料,经筛选获得100%感染Wolbachia和不感染Wolbachia的品系,通过杂交实验和实时定量PCR的方法研究寄主遗传背景、雄螨日龄、温度以及雄螨体内Wolbachia菌量等因子对我国二斑叶螨体内Wolbachia诱导CI能力的影响。结果表明:1,3,5和7日龄的雄螨诱导的CI的强度没有差异,表明雄螨日龄对我国二斑叶螨体内Wolbachia诱导CI的能力没有影响。二斑叶螨分别放在20℃的低温、 25℃的适温和30℃的高温条件下饲养时,Wolbachia诱导CI的能力也没有任何变化,表明温度对我国二斑叶螨体内Wolbachia诱导CI的能力也没有影响。江苏徐州种群所感染Wolbachia菌量显著高于辽宁兴城种群,并且这两个种群感染Wolbachia菌量都随着雄螨日龄的增大而显著增加,表明Wolbachia菌量对我国二斑叶螨体内Wolbachia诱导CI的能力没有影响;江苏徐州种群内Wolbachia不能诱导CI可能是Wolbachia株系与寄主的遗传背景共同作用的结果。研究结果为进一步了解Wolbachia的生殖调控机理提供了重要依据。  相似文献   

17.
【目的】Wolbachia 是广泛存在于节肢动物和丝状线虫体内的一类共生菌, 能够以多种方式对宿主产生影响。精卵细胞质不亲和(CI)是其引起的最普遍的表型, 即感染Wolbachia的雄性宿主与未感染或感染不同品系的雌性宿主交配后, 不能产生后代或后代极少, 而感染同品系Wolbachia的雌雄宿主交配后则能正常产生后代。我们前期研究发现, 湖北武汉、 云南六库和天津3个地区黑腹果蝇Drosophila melanogaster被Wolbachia感染。本研究旨在明确这3个地区黑腹果蝇中Wolbachia的系统发育关系及其对宿主生殖的影响。【方法】利用Clustal X软件对Wolbachia的wsp基因序列进行比对, 利用MEGA软件构建系统发育树。采用多位点序列分型(MLST)的方法对Wolbachia进行分型。通过区内交配和区之间杂交的方式研究不同地区黑腹果蝇体内Wolbachia 的关系及其对果蝇生殖的影响。【结果】湖北武汉、 云南六库和天津3个地区黑腹果蝇中感染的Wolbachia都是属于A大组的Mel亚群。这3个地区果蝇感染的Wolbachia的序列类型(ST)不同, Wolbachia之间存在一定的差异。湖北武汉和天津果蝇中的Wolbachia能引起强烈的CI表型, 而云南六库果蝇中的Wolbachia引起的CI强度相对较弱。武汉果蝇中Wolbachia不能完全挽救天津果蝇中Wolbachia引起的CI表型, 而天津果蝇中Wolbachia也不能完全挽救武汉果蝇中Wolbachia引起的CI表型。【结论】武汉和天津地区黑腹果蝇中的Wolbachia可能距离较远。Wolbachia的长期共生可能对黑腹果蝇的进化产生了一定的影响, 湖北武汉与云南六库的黑腹果蝇中感染的Wolbachia属于不同的序列类型, 这2个地区的黑腹果蝇已发生了一定的分歧, 产生了一定的生殖隔离。  相似文献   

18.
Wolbachia are bacteria that live intracellularly in a wide variety of arthropods. They are maternally inherited and can affect both reproduction and fitness of its host. When infected males mate with uninfected females or females infected by a different Wolbachia strain, there is often a failure of karyogamy, which is usually attributed to cytoplasmic incompatibility (CI). We measured the strength of CI induced by Wolbachia and the fitness effects in three Chinese populations of the brown planthopper Nilaparvata lugens from Hainan, Yunnan, and Guangxi provinces, respectively. No evidence for CI was found in any of the populations, whereas an enhanced fecundity and shortened longevity were observed only in the Hainan population. The infection density was significantly higher in the Hainan population than in the Guangxi population. The Wolbachia strain infecting the three populations appeared to be the same based on the nucleotide sequence of the wsp gene. Therefore, the variable effects of Wolbachia on host fitness seem to be the result of differences in the host genetic background and Wolbachia infection density. The ability of the non-CI-inducing Wolbachia to maintain themselves in their hosts may be attributed to their positive effects on host fecundity and efficient maternal transmission.  相似文献   

19.
Wolbachia are maternally inherited bacteria that commonly spread through host populations by causing cytoplasmic incompatibility, often expressed as reduced egg hatch when uninfected females mate with infected males. Infected females are frequently less fecund as a consequence of Wolbachia infection. However, theory predicts that because of maternal transmission, these "parasites" will tend to evolve towards a more mutualistic association with their hosts. Drosophila simulans in California provided the classic case of a Wolbachia infection spreading in nature. Cytoplasmic incompatibility allowed the infection to spread through individual populations within a few years and from southern to northern California (more than 700 km) within a decade, despite reducing the fecundity of infected females by 15%-20% under laboratory conditions. Here we show that the Wolbachia in California D. simulans have changed over the last 20 y so that infected females now exhibit an average 10% fecundity advantage over uninfected females in the laboratory. Our data suggest smaller but qualitatively similar changes in relative fecundity in nature and demonstrate that fecundity-increasing Wolbachia variants are currently polymorphic in natural populations.  相似文献   

20.
Infections with the rickettsial microorganism Wolbachia are cytoplasmically inherited and occur in a wide range of insect species and several other arthropods. Wolbachia infection often results in unidirectional cytoplasmic incompatibility (CI): crosses between infected males and uninfected females are incompatible and show a reduction of progeny or complete inviability. Unidirectional CI can also occur when males harbouring two incompatible Wolbachia strains are crossed with females infected with only one of the two strains. In the flour beetle Tribolium confusum, Wolbachia infections are of particular interest because of the severity of incompatibility. Typically, no progeny results from the incompatible cross, whereas only partial incompatibility is observed in most other hosts. Werren et al. (1995a) reported that Wolbachia infections in T. confusum consist of two bacterial strains belonging to distinct phylogenic groups, based on PCR amplification and sequence analysis of the bacterial cell division gene ftsZ. However, Fialho & Stevens (1996) showed that eight strains of T. confusum were infected with a single and common incompatibility type. Here we report analysis of the ftsZ gene by specific PCR amplification. Diagnostic restriction enzyme assays revealed no evidence of double infections in 11 geographic strains of T. confusum, including the strain examined by Werren et al. (1995a). Further, sequence analysis of the Wolbachia ftsZ gene and an internal transcribed spacer (ITS) region in two of these strains displayed no nucleotide variation or evidence of polymorphisms. Results suggest that T. confusum is infected with B-group Wolbachia only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号