首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction in nutrient intake without malnutrition can delay ageing and extend healthy life in diverse organisms from yeast to primates. This effect can be recapitulated by genetic or pharmacological dampening of the signal through nutrient signalling pathways, making them a promising target for intervention into human ageing and age-related diseases. Here we review the current knowledge of the interactions between nutrient signalling pathways and ageing, focusing on the findings emerged in the past few years.  相似文献   

2.
Studies to find genes that affect maximum lifespan aim at identifying important determinants of ageing that may be universal across species. Model organisms show insulin signalling can play an important role in ageing. In view of insulin resistance, such loci can also be important in human ageing and health. The study of long-lived humans and their children points to the relevance of lipoprotein profiles and particle size for longevity. If ageing pathways are conserved, then the genes mediating such pathways may also be conserved. Cross-species sequence comparisons of potential longevity loci may reveal whether the pathways that they represent are central themes in lifespan regulation. Using bioinformatic tools, we performed a sequence comparison of the genes involved in lipid metabolism identified in humans as potential longevity loci. This analysis revealed that lipid storage and transport may be a common theme related to longevity in humans, honeybees and nematodes. Here, the vitellogenin family emerges as a potential key connection between lipid metabolism and the insulin/IGF-1 signalling pathway.  相似文献   

3.
Ageing in diverse species ranging from yeast to humans is associated with extensive changes in both general and specific protein synthesis. Accumulating evidence now indicates that these alterations are not simply a corollary of the ageing process but, rather, they have a causative role in senescent decline. Indeed, interfering with mRNA translation significantly influences longevity. Interestingly, the mechanisms that control mRNA translation interface with intricate, conserved signalling pathways and specific conditions that regulate ageing, such as the insulin-insulin growth factor 1 signalling pathway and caloric restriction. This emerging relationship reveals that protein synthesis is a novel determinant of ageing in diverse organisms such as yeast, worms, flies and mice and can thus be considered as a universal component of the ageing process.  相似文献   

4.
Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.  相似文献   

5.
Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster depletion of stem cells, which in turn contributes to accelerated ageing. Genetic manipulations of DNA repair pathways in mice further strengthen this view and also indicate that disruption of specific pathways, such as nucleotide excision repair and non-homologous end joining, is more strongly associated with premature ageing phenotypes. Delaying ageing in mice by decreasing levels of DNA damage, however, has not been achieved yet, perhaps due to the complexity inherent to DNA repair and DNA damage response pathways. Another open question is whether DNA repair optimization is involved in the evolution of species longevity, and we suggest that the way cells from different organisms respond to DNA damage may be crucial in species differences in ageing. Taken together, the data suggest a major role of DNA damage in the modulation of longevity, possibly through effects on cell dysfunction and loss, although understanding how to modify DNA damage repair and response systems to delay ageing remains a crucial challenge.  相似文献   

6.
We propose that ageing is linked to colonic carcinogenesis through crosstalk between Wnt activity and signalling pathways related to ageing and senescence: progerin, klotho and mTOR. Mutations in the Wnt signalling pathway are responsible for the majority of colorectal cancers (CRCs); however, hyperactivation of Wnt signalling by butyrate, a breakdown product of dietary fibre, induces CRC cell apoptosis. This effect of butyrate may in part explain the protective action of fibre against CRC. Hutchinson–Gilford progeria syndrome is a premature ageing disorder caused by accumulation of the progerin protein; however, healthy individuals also produce progerin in the course of their normal ageing. Progerin activates expression of the Wnt inhibitors HES1 and TLE1. Thus, we hypothesize that with age, the increasing expression of progerin suppresses butyrate‐mediated Wnt hyperactivation and apoptosis, leading to increased CRC risk. Wild‐type klotho contributes to a significantly increased lifespan; however, Klotho gene variants differ significantly between newborns and elderly. Klotho inhibits basal Wnt signalling activity; thus, the protein may function as a tumour suppressor for CRC. However, similar to progerin, klotho variants associated with lifespan differences may repress butyrate‐mediated Wnt hyperactivation, and thus increase the risk of CRC. Finally, mTOR signalling has also been linked to human ageing, and crosstalk between Wnt and mTOR signalling may influence colonic tumourigenesis. Understanding how progerin, klotho and mTOR link ageing with colonic neoplastic development may lead to novel preventive and therapeutic strategies against CRC associated with age.  相似文献   

7.
Studies of the effects of single-gene mutations on longevity in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus identified homologous, highly conserved signalling pathways that influence ageing. In each of these very distantly related species, single mutations which lead-directly or indirectly-to reduced insulin, insulin-like growth factor (IGF) or insulin/IGF-like signalling (IIS) can produce significant increases in both average and maximal lifespan. In mice, most of the life-extending mutations described to date reduce somatotropic (growth hormone (GH) and IGF-1) signalling. The reported extensions of longevity are most robust in GH-deficient and GH-resistant mice, while suppression of somatotropic signalling 'downstream' of the GH receptor produces effects that are generally smaller and often limited to female animals. This could be due to GH influencing ageing by both IGF-1-mediated and IGF-1-independent mechanisms. In mutants that have been examined in some detail, increased longevity is associated with various indices of delayed ageing and extended 'healthspan'. The mechanisms that probably underlie the extension of both lifespan and healthspan of these animals include increased stress resistance, improved antioxidant defences, alterations in insulin signalling (e.g. hypoinsulinaemia combined with improved insulin sensitivity in some mutants and insulin resistance in others), a shift from pro- to anti-inflammatory profile of circulating adipokines, reduced mammalian target of rapamycin-mediated translation and altered mitochondrial function including greater utilization of lipids when compared with carbohydrates.  相似文献   

8.
Loss of genome maintenance may causally contribute to ageing, as exemplified by the premature appearance of multiple symptoms of ageing in a growing family of human syndromes and in mice with genetic defects in genome maintenance pathways. Recent evidence revealed a similarity between such prematurely ageing mutants and long-lived mice harbouring mutations in growth signalling pathways. At first sight this seems paradoxical as they represent both extremes of ageing yet show a similar 'survival' response that is capable of delaying age-related pathology and extending lifespan. Understanding the mechanistic basis of this response and its connection with genome maintenance would open exciting possibilities for counteracting cancer or age-related diseases, and for promoting longevity.  相似文献   

9.
Ageing is intrinsically complex, being driven by multiple causal mechanisms. Each mechanism tends to be partially supported by data indicating that it has a role in the overall cellular and molecular pathways underlying the ageing process. However, the magnitude of this role is usually modest. The systems biology approach combines (i) data-driven modelling, often using the large volumes of data generated by functional genomics technologies, and (ii) hypothesis-driven experimental studies to investigate causal pathways and identify their parameter values in an unusually quantitative manner, which enables the contributions of individual mechanisms and their interactions to be better understood, and allows for the design of experiments explicitly to test the complex predictions arising from such models. A clear example of the success of the systems biology approach in unravelling the complexity of ageing can be seen in recent studies on cell replicative senescence, revealing interactions between mitochondrial dysfunction, telomere erosion and DNA damage. An important challenge also exists in connecting the network of (random) damage-driven proximate mechanisms of ageing with the higher level (genetically specified) signalling pathways that influence longevity. This connection is informed by actions of natural selection on the determinants of ageing and longevity.  相似文献   

10.
Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.  相似文献   

11.
Research on ageing made a big leap forward when genes regulating lifespan were discovered about a decade ago. First isolated by screening the genome of the nematode Caenorhabditis elegans, most of these genes belong to an essential signalling pathway that is highly conserved during animal evolution. Orthologous genes in vertebrate species are the families of genes coding for insulin, insulin-like growth factors (IGF) and related proteins. Intensively studied and well-known for their pivotal roles in proliferation, differentiation, survival and metabolism of most cells, we now discover their multiples functions with respect to the control of longevity and their ability to modulate the cell's responses to oxidative stress, a major cause of cellular and organismal ageing. The activity of IGF signalling in mammals depends on a complex interplay of endocrine signals that together constitute the somatotropic axis. Accordingly, several components of this hormone axis, like growth hormone or growth hormone releasing hormone receptors, regulate efficiently animal longevity, which has been elegantly demonstrated by studies performed in genetically modified mouse models. From this and other work, it becomes increasingly clear that the control of ageing is a question of hormonal regulations. We here present several of these models and discuss the respective contributions of insulin and IGF signalling to the regulation of lifespan. We review data on the Klotho gene that acts on lifespan via surprising and not yet fully understood molecular mechanisms, connecting this new, hormone-like substance to IGF and insulin signalling. We further report recent evidence showing that human lifespan might be controlled in similar ways. Finally, we shed some light on clinical GH treatment in humans, from an endocrinologist's point of view.  相似文献   

12.
Recent animal studies have demonstrated evidence of the involvement of insulin and insulin-like growth factor (IGF)-I signalling in the control of ageing and longevity. Disruption of insulin/IGF-I signalling pathways significantly extends lifespan in several animal models. Similarities among these signalling pathways in animals and humans raise the possibility that modifications in the IGF-I signalling system could also extend lifespan in humans. However, in contrast to the findings in animal studies, reduced IGF-I activity in humans is not associated with longevity. In humans, low IGF-I activity is even associated with an increased risk of developing cardiovascular disease and diabetes. High IGF-I activity in humans is associated with an increased risk of developing cancer. In addition, genetic predisposition and lifestyle play a major role in determining age-associated disease. For each individual there is probably a specific optimal 'setpoint' for the insulin/growth hormone/IGF-I axis which co-determines survival.  相似文献   

13.
14.
《Free radical research》2013,47(8):28-38
Abstract

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the Maillard chemical process of non- enzymatic glycation of free amino groups of proteins, lipids and nucleic acids. This chemical modification of biomolecules is triggered by endogeneous hyperglycaemic or oxidative stress-related processes. Additionally, AGEs can derive from exogenous, mostly diet-related, sources. Considering that AGE accumulation in tissues correlates with ageing and is a hallmark in several age-related diseases it is not surprising that the role of AGEs in ageing and pathology has become increasingly evident. The receptor for AGEs (RAGE) is a single transmembrane protein being expressed in a wide variety of human cells. RAGE binds a broad repertoire of extracellular ligands and mediates responses to stress conditions by activating multiple signal transduction pathways being mostly responsible for acute and/or chronic inflammation. RAGE activation has been implicated in ageing as well as in a number of age-related diseases, including atherosclerosis, neurodegeneration, arthritis, stoke, diabetes and cancer. Here we present a synopsis of findings that relate to AGEs-reported implication in cell signalling pathways and ageing, as well as in pathology. Potential implications and opportunities for translational research and the development of new therapies are also discussed.  相似文献   

15.
16.
17.
18.
Lamins are major structural proteins of the nucleus and are essential for nuclear integrity and organization of nuclear functions. Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different tissues such as muscle, adipose or neuronal tissues, or cause premature ageing syndromes. New findings on the role of lamins in cellular signalling pathways, as well as in ubiquitin-mediated proteasomal degradation, have given important insights into possible mechanisms of pathogenesis.  相似文献   

19.
20.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号