共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans. 相似文献
2.
3.
4.
N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase 总被引:2,自引:0,他引:2
Ailor E Takahashi N Tsukamoto Y Masuda K Rahman BA Jarvis DL Lee YC Betenbaugh MJ 《Glycobiology》2000,10(8):837-847
The N-glycans of human serum transferrin produced in Trichopulsia ni cells were analyzed to examine N-linked oligosaccharide processing in insect cells. Metabolic radiolabeling of the intra- and extracellular protein fractions revealed the presence of multiple transferrin glycoforms with molecular weights lower than that observed for native human transferrin. Consequently, the N-glycan structures of transferrin in the culture medium were determined using three-dimensional high performance liquid chromatography. The attached oligosaccharides included high mannose, paucimannosidic, and hybrid structures with over 50% of these structures containing one fucose, alpha(1,6)-, or two fucoses, alpha(1,6)- and alpha(1,3)-, linked to the Asn-linked N-acetylglucosamine. Neither sialic acid nor galactose was detected on any of the N-glycans. However, when transferrin was coexpressed with beta(1,4)-galactosyltransferase three additional galactose-containing hybrid oligosaccharides were obtained. The galactose attachments were exclusive to the alpha(1, 3)-mannose branch and the structures varied by the presence of zero, one, or two attached fucose residues. Furthermore, the presence of the galactosyltransferase appeared to reduce the number of paucimannosidic structures, which suggests that galactose attachment inhibits the ability of hexosaminidase activity to remove the terminal N-acetylglucosamine. The ability to promote galactosylation and reduce paucimannosidic N-glycans suggests that the oligosaccharide processing pathway in insect cells may be manipulated to mimic more closely that of mammalian cells. 相似文献
5.
6.
Tyrosinase-related protein-2 (TRP-2) is a DOPAchrome tautomerase catalyzing a distal step in the melanin synthesis pathway. Similar to the other two melanogenic enzymes belonging to the TRP gene family, tyrosinase and TRP-1, TRP-2 is expressed in melanocytes and melanoma cells. Despite the increasing evidence of its efficiency as a melanoma antigen, little is known about the maturation and intracellular trafficking of TRP-2. Here we show that TRP-2 is mainly distributed in the TGN of melanoma cells instead of being confined solely to melanosomes. This, together with the plasma membrane occasional localization observed by immunofluorescence, suggest the TRP-2 participation in a recycling pathway, which could include or not the melanosomes. Using pulse-chase experiments we show that the TRP-2 polypeptide folds in the endoplasmic reticulum (ER) in the presence of calnexin, until it reaches a dithiothreitol-resistant conformation enabling its ER exit to the Golgi. If N-glycosylation inhibitors prevent the association with calnexin, the TRP-2 nascent chain undergoes an accelerated degradation process. This process is delayed in the presence of proteasomal inhibitors, indicating that the misfolded chain is retro-translocated from the ER into the cytosol and degraded in proteasomes. This is a rare example in which calnexin although indispensable for the nascent chain folding is not required for its targeting to degradation. Therefore TRP-2 may prove to be a good model to document the calnexin-independent retro-translocation process of proteasomally degraded proteins. Clearly, TRP-2 has a distinct maturation pathway from tyrosinase and TRP-1 and possibly a second regulatory function within the cell. 相似文献
7.
8.
N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration
Lee SU Grigorian A Pawling J Chen IJ Gao G Mozaffar T McKerlie C Demetriou M 《The Journal of biological chemistry》2007,282(46):33725-33734
Multiple sclerosis (MS) is characterized by inflammatory demyelination of axons and neurodegeneration, the latter inadequately modeled in experimental autoimmune encephalomyelitis (EAE). Susceptibility of inbred mouse strains to EAE is in part determined by major histocompatibility complex haplotype; however, other molecular mechanisms remain elusive. Galectins bind GlcNAc-branched N-glycans attached to surface glycoproteins, forming a molecular lattice that restricts lateral movement and endocytosis of glycoproteins. GlcNAc branching negatively regulates T cell activity and autoimmunity, and when absent in neurons, induces apoptosis in vivo in young adult mice. We find that EAE susceptible mouse strains PL/J, SJL, and NOD have reduced GlcNAc branching. PL/J mice display the lowest levels, partial deficiencies in N-acetylglucosaminyltransferase I, II, and V (i.e. Mgat1, -2, and -5), T cell hyperactivity and spontaneous late onset inflammatory demyelination and neurodegeneration; phenotypes markedly enhanced by Mgat5(+/-) and Mgat5(-/-) backgrounds in a gene dose-dependent manner. Spontaneous disease is transferable and characterized by progressive paralysis, tremor, dystonia, neuronophagia, and axonal damage in both demyelinated lesions and normal white matter, phenocopying progressive MS. Our data identify hypomorphic Golgi processing as an inherited trait that determines susceptibility to EAE, provides a unique spontaneous model of MS, and suggests GlcNAc-branching deficiency may promote T cell-mediated demyelination and neurodegeneration in MS. 相似文献
9.
10.
Molecular analysis of mutagenesis in mammalian cells 总被引:1,自引:0,他引:1
A Sarasin F Bourre A Benoit L Daya-Grosjean A Gentil 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1985,47(5):479-488
Mammalian cells are constantly facing various types of mutagens. However, due to the high complexity of the cell genome, the molecular analysis of mutagenesis has not yet been possible. Therefore, we have used simian virus 40 (SV40) as a biological and molecular probe to characterize mutagenesis at the nucleotide level. By using a reversion assay from a temperature-sensitive phenotype towards a wild-type phenotype, we have analysed mutagenesis induced by u.v.-light and by apurinic sites (Ap sites). We report here experiments allowing us to quantify and to compare the mutagenic efficiency of various DNA lesions measured on the SV40 genome. The Ap sites are very mutagenic in this type of assay. The molecular analysis of u.v.-induced mutagenesis reveals that mutations correspond to single base-pair substitutions always located opposite Py-Py lesions. The mutations are almost equally distributed between transition and transversion types, and between the 5' and the 3' side of the Py-Py targets. These results demonstrate for the first time in animal cells the existence of targeted mutations induced by u.v.-light. We propose therefore, the use of SV40 as an efficient biological and molecular probe for assaying mutagenic pathways in mammalian cells. 相似文献
11.
12.
The 3'-terminal structures of ribosomal 28S RNA and its precursors from rat and mouse were analyzed by means of periodate oxidation followed by reduction with 3H-borohydride. 3'-terminal labeled nucleoside derivatives produced by RNase T2 digestion were determined by thin-layer chromatography and oligonucleotides generated by RNase T1 digestion were analyzed by DEAE-Sephadex chromatography. In the rat, the major 3'-terminal sequences of ribosomal 28S RNA, nucleolar 28S, 32S, 41S, and 45S RNAs were YGUoh, GZ2Uoh, GZ12Uoh, GZ2Uoh, and GZ7Goh, respectively, whereas in the mouse corresponding sequences were YGUoh, GZ1,2, or 3Uoh, Goh, Uoh and GZ 13Uoh, respectively. (Y: pyrimidine nucleoside, Z: any nucleoside other than guanosine) These results suggest that a "transcribed spacer" sequence is present at the 3'-terminus of the 45S pre-ribosomal RNA, which is gradually removed during the steps of processing. 相似文献
13.
Fukuta K Abe R Yokomatsu T Minowa MT Takeuchi M Asanagi M Makino T 《Archives of biochemistry and biophysics》2001,392(1):79-86
We investigated beta 1,4-GalT (UDP-galactose: beta-d-N-acetylglucosaminide beta 1,4-galactosyltransferase) in terms of intracellular competition with GnT-IV (UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1,4-N-acetylglucosaminyltransferase) and GnT-V (UDP-N-acetylglucosamine: alpha1,6-d-mannoside beta 1,6-N-acetylglucosaminyltransferase). The beta 1,4-GalT-I gene was introduced into Chinese hamster ovary (CHO) cells producing human interferon (hIFN)-gamma (IM4/V/IV cells) and five clones expressing various levels of beta 1,4-GalT were isolated. As we previously reported, parental IM4/V/IV cells express high levels of GnT-IVa and -V and produce hIFN-gamma having primarily tetraantennary sugar chains. The branching of sugar chains on hIFN-gamma was suppressed in the beta 1,4-GalT-enhanced clones to a level corresponding to the intracellular activity of beta 1,4-GalT relative to GnTs. Moreover, the contents of hybrid-type and high-mannose-type sugar chains increased in these clones. The results showed that beta 1,4-GalT widely affects N-glycan processing by competing with GnT-IV, GnT-V, and alpha-mannosidase II in cells and also by some other mechanisms that suppress the conversion of high-mannose-type sugar chains to the hybrid type. 相似文献
14.
Kimura Y Ushijima T Maeda M Hama Y Kimura M Okihara K Sugimoto H Yamada H 《Bioscience, biotechnology, and biochemistry》2006,70(10):2583-2587
In our previous paper (Kimura, Y., et al., Biosci. Biotechnol. Biochem., 67, 1852-1856, 2003), we found that a complex type N-glycans containing beta1-3 galactose residue occurs on royal jelly glycoproteins. During structural analysis of minor components of royal jelly N-glycans, we found complex type N-glycans bearing both galactose and N-acetylgalactosamine residues. Detailed structural analysis of pyridylaminated oligosaccharide revealed that the newly found N-glycan had a complex type structure harboring a tumor marker (T-antigen) unit: Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-6 (Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-3) Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this may be the first report of the presence of the T-antigen unit in the N-glycan moiety of eucaryotic glycoproteins. 相似文献
15.
The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing 总被引:1,自引:0,他引:1
Léonard R Rendic D Rabouille C Wilson IB Préat T Altmann F 《The Journal of biological chemistry》2006,281(8):4867-4875
Most processed, e.g. fucosylated, N-glycans on insect glycoproteins terminate in mannose, yet the relevant modifying enzymes require the prior action of N-acetylglucosaminyltransferase I. This led to the hypothesis that a hexosaminidase acts during the course of N-glycan maturation. To determine whether the Drosophila melanogaster genome indeed encodes such an enzyme, a cDNA corresponding to fused lobes (fdl), a putative beta-N-acetylglucosaminidase with a potential transmembrane domain, was cloned. When expressed in Pichia pastoris, the enzyme exhibited a substrate specificity similar to that previously described for a hexosaminidase activity from Sf-9 cells, i.e. it hydrolyzed exclusively the GlcNAc residue attached to the alpha1,3-linked mannose of the core pentasaccharide of N-glycans. It also hydrolyzed p-nitrophenyl-N-acetyl-beta-glucosaminide, but not chitooligosaccharides; in contrast, Drosophila HEXO1 and HEXO2 expressed in Pichia cleaved both these substrates but not N-glycans. The localization of recombinant FDL tagged with green fluorescent protein in Drosophila S2 cells by immunoelectron microscopy showed that this enzyme transits through the Golgi, is present on the plasma membrane and in multivesicular bodies, and is secreted. Finally, the N-glycans of two lines of fdl mutant flies were analyzed by mass spectrometry and reversed-phase high-performance liquid chromatography. The ratio of structures with terminal GlcNAc over those without (i.e. paucimannosidic N-glycans) was drastically increased in the fdl-deficient flies. Therefore, we conclude that the fdl gene encodes a novel hexosaminidase responsible for the occurrence of paucimannosidic N-glycans in Drosophila. 相似文献
16.
A vaccinia virus vector was used to express the yeast KEX1 gene, which encodes a prohormone carboxypeptidase specific for the removal of basic amino acids from prohormone processing intermediates, in mammalian cells. When produced in BSC-40 cells, Kex1p was localized to the perinuclear region and conferred a large increase in enzymatic activity characteristic of this carboxypeptidase. Expression of the KEX1 gene together with the yeast KEX2 gene, which encodes a prohormone endopeptidase specific for cleavage at pairs of basic amino acids, and the mouse proopiomelanocortin (mPOMC) cDNA in BSC-40 cells resulted in the full conversion of mPOMC to mature peptides including gamma-lipotropin. This in vivo processing of mPOMC to mature peptides by the KEX2/KEX1 gene products demonstrates a significant functional homology of the basic prohormone processing machinery in yeast and neuroendocrine cells. 相似文献
17.
18.
Lectin analysis of human immunoglobulin G N-glycan sialylation 总被引:2,自引:0,他引:2
The lectins Sambucus nigraagglutinin (SNA) and Ricinus communisagglutinin (RCA), specific for 2,6 linked sialylation, and terminal galactose respectively were used to study the occurrence, linkage and distribution of human immunoglobulin G (IgG) sialylation. SNA was shown to bind N-glycan 2,6-linked sialic acid only. Sialidase analysis confirmed that this is the dominant, if not exclusive linkage. Total IgG sialylation was estimated at 1.0[emsp4 ]g SA/mg IgG (or about 0.5 mole per mole) using a biochemical sialic acid assay. SNA displayed strong binding to the IgG Fab fragment in both its native and denatured state. In contrast, SNA failed to bind the IgG Fc fragment in its native form, but displayed strong binding after the Fc was denatured. This allowed the construction of quantitative assays capable of measuring both IgG Fab and Fc 2,6-sialylation without the need for enzymatic peptide digestion. 相似文献
19.
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of double-strand breaks arising during replication and is thought to be important for the prevention of genomic instability and cancer. Analysis of sister chromatid recombination at a molecular level has been limited by the difficulty of selecting specifically for these events. To overcome this, we have developed a novel "nested intron" reporter that allows the positive selection in mammalian cells of "long tract" gene conversion events arising between sister chromatids. We show that these events arise spontaneously in cycling cells and are strongly induced by a site-specific double-strand break (DSB) caused by the restriction endonuclease, I-SceI. Notably, some I-SceI-induced sister chromatid recombination events entailed multiple rounds of gene amplification within the reporter, with the generation of a concatemer of amplified gene segments. Thus, there is an intimate relationship between sister chromatid recombination control and certain types of gene amplification. Dysregulated sister chromatid recombination may contribute to cancer progression, in part, by promoting gene amplification. 相似文献
20.
Parallel processing in the mammalian retina 总被引:1,自引:0,他引:1
Wässle H 《Nature reviews. Neuroscience》2004,5(10):747-757
Our eyes send different 'images' of the outside world to the brain - an image of contours (line drawing), a colour image (watercolour painting) or an image of moving objects (movie). This is commonly referred to as parallel processing, and starts as early as the first synapse of the retina, the cone pedicle. Here, the molecular composition of the transmitter receptors of the postsynaptic neurons defines which images are transferred to the inner retina. Within the second synaptic layer - the inner plexiform layer - circuits that involve complex inhibitory and excitatory interactions represent filters that select 'what the eye tells the brain'. 相似文献