首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for the evolution of fertilization incompatibilities and rapid speciation can be biased by the occurrence of hybridization and reproductive endosymbionts such as Wolbachia. For example, patterns of mitochondrial DNA (mtDNA) variation can be obscured by mitotypes hitchhiking on extrachromosomal elements like Wolbachia, while such endosymbionts can also induce phenotypes that mirror the operation of intrinsic fertilization incompatibilities between species. Therefore, before strong inferences can be drawn concerning the rates and processes of speciation in arthropod systems, we must first assess whether extrinsic endosymbionts obscure patterns of speciation. Here, I use the Allonemobius fasciatus-socius species complex to determine what role Wolbachia has played in the presumed rapid divergence of this complex by analyzing patterns of mtDNA and nuclear DNA variation in conjunction with sequence and cytoplasmic incompatibility data on Wolbachia. Data on molecular variation suggest that Wolbachia has not induced a strong selective sweep of the mitochondrial genome; nor does Wolbachia appear to induce cytoplasmic incompatibility. Preliminary evidence indicates that a third species identified within this complex, A. sp. nov. Tex, is partially reproductively isolated from A. socius, its closest relative, via conspecific sperm precedence or some form of postzygotic isolation. Moreover, shared mitotypes between A. sp. nov. Tex and A. socius may indicate the occurrence of a hybrid zone between these species near the border of Texas and Louisiana, although they may also represent shared ancestral polymorphisms. Molecular data also indicate that all three species in this complex diverged from a common ancestor as recently as 3000-30,000 years ago. Finally, the radiation of this complex from its ancestral population likely occurred in the presence of one strain of Wolbachia, thus suggesting a minimal role for Wolbachia during this burst of speciation. In total, barriers to gene flow do appear to have evolved very rapidly in this group of crickets.  相似文献   

2.
The evolution of barriers to gene exchange is centrally important to speciation. We used the crickets Allonemobius fasciatus and A. socius to investigate the genetic architecture of conspecific sperm precedence (CSP), a postinsemination prezygotic reproductive barrier. With amplified fragment-length polymorphism (AFLP) markers and controlled crosses we constructed linkage maps and estimated positions of QTL associated with CSP. The majority of QTL have low to moderate effects, although a few QTL exist in A. socius with large effects, and the numbers of QTL are comparable to numbers of genes accounting for species differences in other studies. The QTL are spread across many unlinked markers, yet QTL placed with linked markers are on a small number of linkage groups that could reflect the role of the large Allonemobius sex chromosome in prezygotic isolation. Although many QTL had positive effects on conspecific sperm utilization several QTL also exerted negative effects, which could be explained by intraspecific sexual conflict, sperm competition, or epistasis of introgressed genes on novel backgrounds. One unexpected outcome was that A. socius CSP alleles have a stronger effect than those from A. fasciatus in hybrid females, causing hybrids to behave like A. socius with regard to sperm utilization. Implications of this asymmetry in the Allonemobius hybrid zone are discussed.  相似文献   

3.
Sperm and female reproductive tract morphology are among the most rapidly evolving characters known in insects. To investigate whether interspecific variation in these traits results from divergent coevolution we examined testis size, sperm length and female reproductive tract morphology for evidence of correlated evolution using 13 species of diopsid stalk-eyed flies. We found that sperm dimorphism (the simultaneous production of two size classes of sperm by individual males) is ancestral and occurs in four genera while sperm monomorphism evolved once and persists in one genus. The length of ''long-sperm'' types, though unrelated to male body or testis size, exhibits correlated evolution with two regions of the female reproductive tract, the spermathecae and ventral receptacle, where sperm are typically stored and used for fertilization, respectively. Two lines of evidence indicate that ''short sperm'', which are probably incapable of fertilization, coevolve with spermathecae. First, loss of sperm dimorphism coincides phylogenetically with reduction or loss of spermathecae. Second, evolutionary change in short-sperm length correlates with change in spermathecal size but not spermathecal duct length or ventral receptacle length. Morphological coevolution between sperm and female reproductive tracts is consistent with a history of female-mediated selection on sperm length.  相似文献   

4.
The complexity of the sperm-storing organ (spermatheca) has been hypothesized to reflect sperm competition intensity in several gastropod species. Furthermore, considerable variation in spermathecal morphology has been detected among populations of the same species. The morphological variation of the fertilization pouch was studied in five populations of the simultaneously hermaphroditic land snail Cornu aspersum (formerly, Helix aspersa). The populations studied differed in snail density and habitat humidity regimes, thus in sperm competition intensity. The study was conducted on wild adult snails and their progeny, which was reared in the laboratory for two successive generations. Finally, the morphology of the spermatheca was correlated to behavioral mating traits of the snails. The fertilization pouch consisted of a simple fertilization chamber and 4-19 blind tubules. The five studied populations did not differ in either mean number of spermathecal tubules, length of the fertilization chamber, length of the main tubule, or cumulative length of all tubules, while they differed in copulation frequency and mating propensity. No correlation was found between snail size and number of tubules, or length of any spermathecal structure measured. Additionally, no correlation was found between any behavioral trait and the morphological characteristics of the spermatheca. Strong correlations were found only among measurements of some of the spermathecal structures. Our results suggest that the complexity of the spermatheca is not related to sperm competition intensity and its structure is thus genetically determined.  相似文献   

5.
Postinsemination barriers to fertilization generally have been ignored by biologists interested in the origin and nature of reproductive isolation among closely related terrestrial animals. Yet evidence presented in this paper indicates that such a barrier bears primary responsibility for the reproductive isolation between the ground crickets Allonemobius fasciatus and Allonemobius socius. Postinsemination barriers to fertilization may isolate many other terrestrial animals as well, but the design of most laboratory hybridization experiments precludes the detection of these barriers.  相似文献   

6.
The evolution of sperm length in moths   总被引:14,自引:0,他引:14  
Sperm form and function remain poorly understood despite being of fundamental biological importance. An instructive approach has been to examine evolutionary associations across comparable taxa between sperm characters and other, potentially selective reproductive traits. We adopt this approach here in a comparative study examining how sperm lengths are associated with male and female reproductive characters across moths. Primary data have revealed Lepidoptera to be an ideal order for examination: there is profound variation in the dimensions (but not organization) of the reproductive traits between closely related species which all share a monophyletic ancestry, for example, eupyrene sperm length varies from 110 to 12,675 microm. Eupyrene (normal fertilizing) and apyrene (anucleate and non-fertile) sperm lengths are positively correlated across taxa and both sperm types show positive associations with mating pattern (as measured by the residual testis size). At fertilization, eupyrene sperm must migrate down the often elongated female spermathecal duct from storage to unite with the ovum. Across taxa, the elongation of this duct is associated with increased eupyrene sperm length, suggesting a positive female influence on sperm size since longer, more powerful sperm may be selected to migrate and/or compete successfully down greater ductal lengths. Apyrene sperm length is not associated with female reproductive tract dimensions. However, we found a positive relationship between the residual testis volume and spermathecal volume, suggesting coevolution between male investment in spermatogenesis and the extent of the female sperm storage capacity. Within males, there is a positive association between the two organs which form the ejaculate-containing spermatophore: the testes and the accessory gland. The 'trade-up' in investment to these components is discussed in relation to paternal investment and mating patterns.  相似文献   

7.
8.
Sperm morphometry is extremely variable across species, but a general adaptive explanation for this diversity is lacking. As sperm must function within the female, variation in sperm form may be associated with variation in female reproductive tract morphology. We investigated this and other potential evolutionary associations between male and female reproductive characters across the Scathophagidae. Sperm length was positively associated with the length of the spermathecal (sperm store) ducts, indicating correlated evolution between the two. No association was found between sperm length and spermathecal size. However, the size of the spermathecae was positively associated with testis size indicating co-evolution between male investment in sperm production and female sperm storage capacity. Furthermore, species with a higher degree of polyandry (larger testes) had longer spermathecal ducts. However, no associations between sperm length or length variation and testis size were found which suggests greater sperm competition sensu stricto does not select for longer sperm.  相似文献   

9.
Long-term studies of hybrid zones can provide valuable insight into a number of questions that have long attracted the attention of evolutionists. These questions range from the stability and fate of hybrid zones to the relative fitness of hybrids. In this paper we report the results of a 14-year survey of the Allonemobius fasciatus-Allonemobius socius hybrid zone. Populations were collected intensively in 1986 and 1987 and then more sporadically through the end of the 1980s and throughout the 1990s. By documenting changes in the genetic composition of populations near and within the zone during this period of time we assessed: the strength of the reproductive isolation between the two species; the relative growth rates (which can be considered a surrogate of relative fitness) of genotype classes corresponding to hybrids and to pure species individuals; and, the power of single-year and multi-year measurements of relative growth rates to predict changes in the genetic composition of mixed populations through time. In brief, we found very large year-to-year variation in the relative growth rates of pure species and hybrid individuals. This variation may reflect the fact that both species are at the edge of their range and perhaps at the limits of their ability to deal with environmental perturbations. As a consequence of the variation, even multi-year estimates of relative growth rates often provided imprecise predictions regarding the future genotypic composition of mixed populations. Despite our limited ability to predict the dynamics of individual populations, some trends are apparent. A. socius, the southern species, has clearly increased in frequency along a transect through the Appalachian Mountains, indicating that the zone is moving north in this region. In contrast, the zone appeared to be more stable along the East Coast transect. Within mixed populations, character-index profiles are often bimodal and stable through time, indicating relatively strong reproductive isolation between the two species that is not being reinforced, nor is it breaking down.  相似文献   

10.
Thorough examinations of purported cases of reproductive character displacement are critical for reaching an understanding of the role of reinforcement in the evolution of reproductive barriers between closely related species. In this paper, we report the results of an extensive investigation of male calling song variation in the ground crickets, Allonemobius fasciatus and A. socius. Contrary to the results of an earlier study, we uncovered little evidence of displacement of songs in areas of overlap. We discuss explanations for the lack of displacement as well as for the discrepancies between the results of the current study and those of the earlier study.  相似文献   

11.
The elongated spermathecal duct of bumblebees has been studied in hibernating queens, queens shortly after hibernation, mature egg-laying queens and uninseminated queens captured during summer, and workers. Only rather small size differences are found when comparing spermathecae of queens and workers. Clear differences between bumblebee queens and workers are found when comparing the histochemistry of the spermathecal ducts. Adult queens, regardless of age and reproductive status have spermathecal ducts that contain PAS positive material, whereas workers do not. It is suggested that the polysaccharides in the spermathecal ducts of queens are necessary as a source of energy for the rapid activation of spermatozoa passing through the duct prior to oocyte fertilization. An ultrastructural investigation revealed the presence of high glycogen content in the cells lining the duct of queens. Assuming that sperm cells are kept in a rather inactive state in the reservoir, the carbohydrate (glycogen) probably serves as an energy source for the sperm. The comparatively increased spermathecal duct length of bumblebees may increase the retention time of sperm inside the lumen.  相似文献   

12.
In many sexually reproducing organisms, females choose mates based on multiple male traits. This study examined how two temporal components of the male mating call – chirp rate and chirp duration – affect female mating preference in five populations of a widely distributed North American cricket, Allonemobius socius (Orthoptera, Gryllidae). Chirp rate and chirp duration of the A. socius mating call were varied independently, and the responses of virgin females to these experimentally manipulated calls were repeatedly measured using a sequential single-stimulus design. Significant among- and within-population variation in chirp-duration preferences of females were found. Contrary to many previous studies, call chirp rate had no effect on female phonotaxis. Also there was no evidence of an interaction between chirp rate and chirp duration on female response to male mating calls. Moreover, female responsiveness to average and above-average chirp duration appeared to decline with female (adult) age. Overall, these results suggest evolved differences among populations in chirp-duration preferences, and that selection can act within populations on female chirp-duration preference.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 461–472.  相似文献   

13.
Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology.  相似文献   

14.
Elevational gradients provide powerful natural systems for testing hypotheses regarding the role of environmental variation in the evolution of life‐history strategies. Case studies have revealed shifts towards slower life histories in organisms living at high elevations yet no synthetic analyses exist of elevational variation in life‐history traits for major vertebrate clades. We examined (i) how life‐history traits change with elevation in paired populations of bird species worldwide, and (ii) which biotic and abiotic factors drive elevational shifts in life history. Using three analytical methods, we found that fecundity declined at higher elevations due to smaller clutches and fewer reproductive attempts per year. By contrast, elevational differences in traits associated with parental investment or survival varied among studies. High‐elevation populations had shorter and later breeding seasons, but longer developmental periods implying that temporal constraints contribute to reduced fecundity. Analyses of clutch size data, the trait for which we had the largest number of population comparisons, indicated no evidence that phylogenetic history constrained species‐level plasticity in trait variation associated with elevational gradients. The magnitude of elevational shifts in life‐history traits were largely unrelated to geographic (altitude, latitude), intrinsic (body mass, migratory status), or habitat covariates. Meta‐population structure, methodological issues associated with estimating survival, or processes shaping range boundaries could potentially explain the nature of elevational shifts in life‐history traits evident in this data set. We identify a new risk factor for montane populations in changing climates: low fecundity will result in lower reproductive potential to recover from perturbations, especially as fewer than half of the species experienced higher survival at higher elevations.  相似文献   

15.
Postmating sexual selection theory predicts that in allopatry reproductive traits diverge rapidly and that the resulting differentiation in these traits may lead to restrictions to gene flow between populations and, eventually, reproductive isolation. In this paper we explore the potential for this premise in a group of damselflies of the family Calopterygidae, in which postmating sexual mechanisms are especially well understood. Particularly, we tested if in allopatric populations the sperm competition mechanisms and genitalic traits involved in these mechanisms have indeed diverged as sexual selection theory predicts. We did so in two different steps. First, we compared the sperm competition mechanisms of two allopatric populations of Calopteryx haemorrhoidalis (one Italian population studied here and one Spanish population previously studied). Our results indicate that in both populations males are able to displace spermathecal sperm, but the mechanism used for sperm removal between both populations is strikingly different. In the Spanish population males seem to empty the spermathecae by stimulating females, whereas in the Italian population males physically remove sperm from the spermathecae. Both populations also exhibit differences in genital morphometry that explain the use of different mechanisms: the male lateral processes are narrower than the spermathecal ducts in the Italian population, which is the reverse in the Spanish population. The estimated degree of phenotypic differentiation between these populations based on the genitalic traits involved in sperm removal was much greater than the differentiation based on a set of other seven morphological variables, suggesting that strong directional postmating sexual selection is indeed the main evolutionary force behind the reproductive differentiation between the studied populations. In a second step, we examined if a similar pattern in genital morphometry emerge in allopatric populations of this and other three species of the same family (Calopteryx splendens, C. virgo and Hetaerina cruentata). Our results suggest that there is geographic variation in the sperm competition mechanisms in all four studied species. Furthermore, genitalic morphology was significantly divergent between populations within species even when different populations were using the same copulatory mechanism. These results can be explained by probable local coadaptation processes that have given rise to an ability or inability to reach and displace spermathecal sperm in different populations. This set of results provides the first direct evidence of intraspecific evolution of genitalic traits shaped by postmating sexual selection.  相似文献   

16.
Tsetse flies Glossina spp. (Diptera: Glossinidae) harbor three different symbiotic microorganisms, one being an intracellular Rickettsia of the genus Wolbachia. This bacterium infects a wide range of arthropods, where it causes a variety of reproductive abnormalities, one of which is termed cytoplasmic incompatibility (CI) that, when expressed, results in embryonic death due to disruptions in fertilization events. We report here that in colonized flies, Wolbachia infections can be detected in 100% of sampled individuals, while infections vary significantly in field populations. Based on Wolbachia Surface Protein (wsp) gene sequence analysis, the infections associated with different fly species are all unique within the A group of the Wolbachia pipientis clade. In addition to being present in germ-line tissues, Wolbachia infections have been found in somatic tissues of several insects. Using a Wolbachia-specific PCR-based assay, the tissue tropism of infections in Glossina morsitans morsitans Westwood, Glossina brevipalpis Newstead and Glossina austeni Newstead were analysed. While infections in G. m. morsitans and G. brevipalpis were limited to reproductive tissues, in G. austeni, Wolbachia could be detected in various somatic tissues.  相似文献   

17.
Phenotypic plasticity describes an organism's ability to produce multiple phenotypes in direct response to its environmental conditions. Over the past 15 years empiricists have found that this plasticity frequently exhibits geographic variation and often possesses a significant heritable genetic basis. However, few studies have examined both of these aspects of plasticity simultaneously. Here, we examined both the geographic and genetic variations of the plasticity for diapause incidence (the proportion of eggs that enter an arrested state of development capable of surviving over the winter) relative to temperatures and photoperiods associated with long and short season environments across six populations of the striped ground cricket, Allonemobius socius, using a half-sibling split brood quantitative genetic design. We found that plasticity, as measured by the slope of the reaction norm, was greater in the southern-low altitude region (where populations are bivoltine) relative to the southern-high and northern-low altitude regions (where populations are univoltine). However, the heritability of plasticity was only significantly different from zero in univoltine populations that experienced "intermediate" natal season lengths. These patterns suggest that selection may favor the plasticity of diapause incidence in bivoltine regions, but act against plasticity in regions in which populations are univoltine. Furthermore, our data suggest that under "intermediate" natal season length conditions, the interplay between local adaptation and gene flow may keep the plasticity of diapause incidence low (but still significant) while maintaining its genetic variation. As such, this study not only provides a novel observation into the geographic variation of phenotypic plasticity, but also provides much needed groundwork for tests of its adaptive significance.  相似文献   

18.
Male traits that correlate with fertilization success include testis size and structure, ejaculate size, ejaculation frequency, and sperm motility. Two hypotheses potentially explain interspecific differences in these traits: sperm competition and sperm limitation. We examined variation in six traits associated with fertilization success in three closely‐related species of bitterling fish; the European bitterling (Rhodeus amarus), the Chinese rose bitterling (Rhodeus ocellatus), and the Chinese bitterling (Rhodeus sinensis). Interspecific differences indicated that the three study species have evolved different sperm allocation strategies. Rhodeus amarus displayed the most developed reproductive apparatus with a number of traits associated with both high levels of sperm production and fertilization efficiency. Rhodeus ocellatus and R. sinensis appear to have more comparable sperm allocation strategies, although relative testis size and spermatozoa head : tail ratio were greater in R. sinensis, suggesting that sperm competition risk may be higher in this species. All three species possessed an unusually well developed sperm duct with evidence of mucin production, which greatly extends the longevity of sperm and, consequently, the period over which fertilization can occur. We discuss these findings in the context of differences in the mating systems of the species examined, and relate the results obtained to differences in the temporal and spatial clustering of fertilizations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 622–632.  相似文献   

19.
Many species differ genetically, physiologically, and morphologically between geographically distinct populations, typically in response to variation in ecological and climatic variables. Little is known, however, about geographical variation in sperm morphology. Sperm morphology is under strong sexual selection, has been shown to evolve rapidly, and often co-varies with other reproductive traits (e.g., testis size or mating system) that differ between populations in some species. The aim of this study was to establish whether sperm morphology varies between populations of the red-winged blackbird (Agelaius phoeniceus), a species with an enormous breeding range and marked inter-population variation in both body size and mating system. We found (1) highly significant variation in sperm morphology among study sites, (2) a gradual increase in sperm length from the southwest to the northeast of the breeding range, and (3) a strong negative association between sperm length and body size. However, the relationship with the mating system remains unclear. Several hypotheses to explain these patterns are proposed.  相似文献   

20.
Wolbachia are widespread cytoplasmically inherited bacteria that induce various reproductive alterations in host arthropods, including cytoplasmic incompatibility (CI), an incompatibility between sperm and egg that typically results in embryonic death. CI has been invoked as a possible mechanism for reproductive isolation and speciation in arthropods, by restricting gene flow and promoting maintenance (and evolution) of genetic divergence between populations. Here we investigate patterns of Wolbachia infection and nuclear and mitochondrial differentiation in geographical populations of the birdnest blowfly Protocalliphora sialia. Blowflies in western North America are infected with two A-group Wolbachia, with some individuals singly and others doubly infected. Individuals in eastern North America mostly show single infections with a B-group Wolbachia. Populations in the Midwest are polymorphic for infections and show A- or B-group infection. There is a low level of mitochondrial divergence and perfect concordance of mitochondrial haplotype with infection type, suggesting that two Wolbachia-associated selective sweeps of the mitochondrion have occurred in this species. Amplified fragment length polymorphism analysis of nuclear genetic variation shows genetic differentiation between the eastern-Midwestern and western populations. Both Midwestern and eastern flies infected with A-Wolbachia show eastern nuclear genetic profiles. Current results therefore suggest that Wolbachia has not acted as a major barrier to gene flow between western and eastern-Midwestern populations, although some genetic differentiation between A-Wolbachia infected and B-Wolbachia infected individuals in eastern-Midwestern populations cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号