首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
To extend previous findings regarding fish health and disease susceptibility of growth-enhanced fish, hematological and immunological parameters have been compared between growth hormone (GH) transgenic and wild-type non-transgenic coho salmon (Oncorhynchus kisutch). Compared to non-transgenic coho salmon, transgenic fish had significantly higher hematocrit (Hct), hemoglobin (Hb), mean cellular hemoglobin (MCH), mean cellular volume (MCV), and erythrocyte numbers, and lower white cell numbers. In addition, resistance to the bacterial pathogen Aeromonas salmonicida (causal agent of furunculosis) has been assessed between the strains. Higher susceptibility of transgenic fish to this disease challenge was observed in two separate year classes of fish. The present findings provide fundamental knowledge of the disease resistance on GH enhanced transgenic coho salmon, which is of importance for assessing the fitness of transgenic strains for environmental risk assessments, and for improving our understanding effects of growth modification on basic immune functions.  相似文献   

2.
Gut morphology in growth hormone transgenic Atlantic salmon   总被引:2,自引:2,他引:0  
Growth hormone transgenic Atlantic salmon Salmo salar reared at 12–13°C were F2 generation derived, using eggs from a transgenic F1 female and fertilized with milt from a non-transgenic male. At the time of tissue sampling the transgenic salmon were growing 1·6 times faster than control salmon. Transgenic salmon tended to have more intestinal folds that were longer than those of control salmon. Consequently, the transgenic salmon had a larger digestive surface area both in the anterior intestine (surface area 1·5 times control) and in the pyloric caeca (surface area 1·2 times control). Most morphological features of the intestine and of the pyloric caeca of transgenic salmon were larger than those of control salmon; in particular, the surface area of the anterior intestine was concordant with the growth rate difference.  相似文献   

3.
In a previous study we showed that many of the morphological features of the respiratory system of GH (growth hormone) transgenic Atlantic salmon are greater than similarly sized control salmon. Here we show that the manifestation of GH transgene is similar in two different lines of GH transgenic Pacific coho salmon, but that it is very different from that in the GH transgenic Atlantic salmon. The GH transgenic Pacific coho salmon do not have a larger gill surface area than similarly sized control fish.  相似文献   

4.
Insertion of a growth hormone (GH) transgene in coho salmon results in accelerated growth, and increased feeding and metabolic rates. Whether other physiological systems within the fish are adjusted to this accelerated growth has not been well explored. We examined the effects of a GH transgene and feeding level on the antioxidant glutathione and its associated enzymes in various tissues of coho salmon. When transgenic and control salmon were fed to satiation, transgenic fish had increased tissue glutathione, increased hepatic glutathione reductase activity, decreased hepatic activity of the glutathione synthesis enzyme γ-glutamylcysteine synthetase, and increased intestinal activity of the glutathione catabolic enzyme γ-glutamyltranspeptidase. However, these differences were mostly abolished by ration restriction and fasting, indicating that upregulation of the glutathione antioxidant system was due to accelerated growth, and not to intrinsic effects of the transgene. Increased food intake and ability to digest potential dietary glutathione, and not increased activity of glutathione synthesis enzymes, likely contributed to the higher levels of glutathione in transgenic fish. Components of the glutathione antioxidant system are likely upregulated to combat potentially higher reactive oxygen species production from increased metabolic rates in GH transgenic salmon.  相似文献   

5.
Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals.  相似文献   

6.
We show that many of the morphological features of the respiratory system of growth enhanced transgenic salmon are greater than those of similarly sized control salmon. Growth hormone transgenic Atlantic salmon, Salmo salar were the F2 generation produced using eggs from a transgenic F1 female and milt from a nontransgenic male. At the time the gill tissues were sampled, the transgenic salmon were growing 2.1 times more rapidly than the nontransgenic control salmon, and they had oxygen uptake rates that were about 1.6 times greater than control salmon. In the present study we show that the gill surface area available for respiratory exchange in the transgenic salmon is about 1.24 times that in control salmon which does not parallel the 1.6 elevation in oxygen uptake. The increase in gill exchange area was due largely to a relatively uniform increase in length of each gill filament.  相似文献   

7.
Routine oxygen consumption ( M o 2) was 35% higher in 1 day starved and 21% higher in 4 day starved adult transgenic coho salmon Oncorhynchus kisutch relative to end of migration ocean-ranched coho salmon. Critical swimming speed ( U crit) and M o 2 at U crit ( M o 2max) were significantly lower in 4 day starved transgenic coho salmon (1·25 BL s−1; 8·79 mg O2 kg−1 min−1) compared to ocean-ranched coho salmon (1·60 BL s−1; 9·87 mg O2 kg−1 min−1). Transgenic fish swam energetically less efficiently than ocean-ranched fish, as indicated by a poorer swimming economy at U crit ( M o 2max     ). Although M o 2max was lower in transgenic coho salmon, the excess post-exercise oxygen consumption (EPOC) measured during the first 20 min of recovery was significantly larger in transgenic coho salmon (44·1 mg O2 kg−1) compared with ocean-ranched coho salmon (34·2 mg O2 kg−1), which had a faster rate of recovery.  相似文献   

8.
Diploid and triploid coho salmon Oncorhynchus kisutch transgenic for growth hormone (GH) and control coho salmon were compared for differences in disease resistance and stress response. Resistance to the bacterial pathogen Vibrio anguillarum was not affected in transgenic fish relative to their non‐transgenic counterparts when they were infected at the fry stage, but was lower in transgenic fish when infected near smolting. Vaccination against vibriosis provided equal protection to both transgenic and non‐transgenic fish. Triploid fish showed a lower resistance to vibriosis than their diploid counterparts. Diploid transgenic fish and non‐transgenic fish appeared to show similar physiological and cellular stress responses to a heat shock. These studies provide information useful for both performance and ecological risk assessments of growth‐accelerated coho salmon.  相似文献   

9.
Should growth hormone (GH) transgenic Atlantic salmon escape, there may be the potential for ecological and genetic impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic and non-transgenic full sibling Atlantic salmon during early ontogeny; a life history period of intense selection that may provide critical insight into the fitness consequences of escaped transgenics. Transgenesis did not affect the routine oxygen consumption of eyed embryos, newly hatched larvae or first-feeding juveniles. Moreover, the timing of early life history events was similar, with transgenic fish hatching less than one day earlier, on average, than their non-transgenic siblings. As the start of exogenous feeding neared, however, transgenic fish were somewhat developmentally behind, having more unused yolk and being slightly smaller than their non-transgenic siblings. Although such differences were found between transgenic and non-transgenic siblings, family differences were more important in explaining phenotypic variation. These findings suggest that biologically significant differences in fitness-related traits between GH transgenic and non-transgenic Atlantic salmon were less than family differences during the earliest life stages. The implications of these results are discussed in light of the ecological risk assessment of genetically modified animals.  相似文献   

10.
In a long-term growth trial, transgenic tilapia Oreochromis niloticus L. showed a 2·5-fold increase in growth compared with non-transgenic siblings. At 7 months, mean mass of transgenic tilapia was 653 g compared with 260 g for non-transgenic siblings. A significant increase ( P >0·01) in head: total length ratio, viscera-somatic index and hepato-somatic index was observed in transgenic fish. Female gonado-somatic index ( I G) was found to be lower in transgenics than non-transgenic siblings in both mixed and separate culture conditions. Transgenic male I G values were found to be higher in mixed culture and lower in separate culture than that of their non-transgenic siblings. Food conversion efficiency was more than 20% greater in the transgenic fish. In a second shorter-term growth performance trial, the transgenic fish grew to about four times the size of their non-transgenic siblings. A digestibility trial suggested that transgenic tilapia were more efficient utilizers of protein, dry matter and energy. Apparent digestibility of protein and apparent energy digestibility were higher in the transgenic fish.  相似文献   

11.
Intestinal morphology in growth hormone transgenic coho salmon   总被引:1,自引:0,他引:1  
In two GH transgenic coho salmon Oncorhynchus kisutch , the surface area of the intestine was 2·2 times that of control salmon and the growth rate was about twice that of controls. It seems likely that the enhanced intestinal surface area is a compensatory feature that is manifested in fast growing salmonids.  相似文献   

12.
Growth hormone transgenic coho salmon Oncorhynchus kisutch fed at the same ration level as non‐transgenic controls (Tc) had the same growth rate as non‐transgenic controls (Nt). In contrast, growth hormone transgenic coho salmon (Tf) fed ad libitum ate about twice as much and had much higher growth rates than the other two groups. The most obvious result was the significantly larger caeca in the Tf group relative to both Nt or pair‐fed Tc. The Tf fish had more caeca that were longer. The results suggested that the effect was indirect and the enlarged caeca required both the GHtransgene and hyperphagia to cause enlarged caecal capacity. A small part of the results, however, also suggested that there was a direct effect of the GHtransgene on some gut tissues, particularly the intestine.  相似文献   

13.
Seasonal variation in daily food intake is a well-documented phenomenon in many organisms including wild-type coho salmon where the appetite is noticeably reduced during periods of decreased day length and low water temperature. This reduction may in part be explained by altered production of cholecystokinin (CCK) and growth hormone (GH). CCK is a hormone produced in the brain and gut that mediates a feeling of satiety and thus has an inhibitory effect on food intake and foraging behaviour. Growth hormone (GH) enhances feeding behaviour and consequently growth, but its production is reduced during winter. The objectives of this study were: first, to compare the seasonal feeding behaviour of wild and GH-transgenic coho salmon; second, to determine the behavioural effect of blocking the action of CCK (by using devazepide) on the seasonal food intake; and third, to measure CCK expression in brain and gut tissues between the two genotypes across seasons. We found that, in contrast to wild salmon, food intake in transgenic salmon was not reduced during winter indicating that seasonal control of appetite regulation has been disrupted by constitutive production of GH in transgenic animals. Blocking of CCK increased food intake in both genotypes in all seasons. The increase was stronger in wild genotypes than transgenic fish; however blocking CCK in wild-type fish in winter did not elevate appetites to levels observed in the summer. The response to devazepide was generally faster in transgenic than in wild salmon with more rapid effects observed during summer than during winter, possibly due to a higher temperature in summer. Overall, a seasonal effect on CCK mRNA levels was observed in telencephalon with levels during winter being higher compared to the summer in wild fish, but with no seasonal effect in transgenic fish. No differences in seasonal CCK expression were found in hypothalamus. Higher levels of CCK were detected in the gut of both genotypes in winter compared to summer. Thus, CCK appears to mediate food intake among seasons in both wild-type and GH-transgenic salmon, and an altered CCK regulation may be responsible at least in part for the seasonal regulation of food intake.  相似文献   

14.
Growth rate has been established as a key parameter influencing foraging decisions involving the risk of predation. Through genetic manipulation, transgenic salmon bred to contain and transmit a growth hormone transgene are able to achieve growth rates significantly greater than those of unmanipulated salmon. Using such growth-enhanced transgenic Atlantic salmon, we directly tested the hypothesis that relative growth rates should be correlated with willingness to risk exposure to a predator. We used size-matched transgenic and control salmon in two experiments where these fish could either feed in safety, or in the presence of the predator. The first experiment constrained the predator behind a Plexiglas partition (no risk of mortality), the second required the fish to feed in the same compartment as the predator (a finite risk of mortality). During these experiments, transgenic salmon had rates of consumption that were approximately five times that of the control fish and rates of movement approximately double that of controls. Transgenic salmon also spent significantly more time feeding in the presence of the predator, and consumed absolutely more food at that location. When there was a real risk of mortality, control fish almost completely avoided the dangerous location. Transgenic fish continued to feed at this location, but at a reduced level. These data demonstrate that the growth enhancement associated with the transgenic manipulation increases the level of risk these fish are willing to incur while foraging. If the genetic manipulation necessary to increase growth rates is achievable through evolutionary change, these experiments suggest that growth rates of Atlantic salmon may be optimized by the risk of predation. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

15.
M. Duan    T. Zhang    W. Hu    L. F. Sundström    Y. Wang    Z. Li    Z. Zhu 《Journal of fish biology》2009,75(6):1459-1472
Food consumption, number of movements and feeding hierarchy of juvenile transgenic common carp Cyprinus carpio and their size-matched non-transgenic conspecifics were measured under conditions of limited food supply. Transgenic fish exhibited 73·3% more movements as well as a higher feeding order, and consumed 1·86 times as many food pellets as their non-transgenic counterparts. After the 10 day experiment, transgenic C. carpio had still not realized their higher growth potential, which may be partly explained by the higher frequency of movements of transgenics and the 'sneaky' feeding strategy used by the non-transgenics. The results indicate that these transgenic fish possess an elevated ability to compete for limited food resources, which could be advantageous after an escape into the wild. It may be that other factors in the natural environment ( i.e. predation risk and food distribution), however, would offset this advantage. Thus, these results need to be assessed with caution.  相似文献   

16.
We compared the performance of normal and growth hormone‐transgenic coho salmon feeding on surface drifting edible and inedible novel prey items in various social environments. With an inherently higher appetite, we predicted that transgenic fish would be more willing to feed on novel prey, and that visual company with another fish would enhance this difference further. Transgenic and normal fish, of similar size and age, were equally willing to attack both the edible (live insects) and inedible (artificial angling lure flies) prey, but transgenic fish did so faster and were more likely to make repeated attacks. Transgenic fish managed to seize and consume the edible prey after fewer attacks than did normal fish. However, swallowing of prey took longer than for normal fish. More transgenic individuals interacted with the inedible prey compared with normal salmon, and initially, transgenic fish in visual company with another fish also interacted more with the prey than single transgenic or any constellation of normal focal fish. With repeated exposures, the number of individuals attacking and the number of interactions with the prey decreased. These responses were stronger in transgenic fish, partly explained by the initially low response in normal fish. The observed differences are most likely the consequences of elevated levels of growth hormone in transgenic fish generating enhanced feeding motivation and reinforcement capacity. In a natural environment, the performance of a growth hormone‐transgenic fish may therefore depend on the relative abundance of profitable vs. unprofitable prey, as well as the presence of other transgenic individuals.  相似文献   

17.
Growth hormone (GH) gene transgenesis has allowed the production of salmon with an inherently increased growth potential, on average two to threefold higher compared with daily specific growth rates observed in normal, non‐transgenic fish. This difference quickly results in animals of very different sizes at age, and is associated with specific morphological effects and enhanced appetites in transgenic animals. However, less is known of the feeding and antipredator behaviour of GH‐transgenic fish, information that can help with predictions of potential ecological consequences of release or escape of transgenic fish into the wild. In a series of experiments, transgenic (T) and normal (N) coho salmon of varying age and size (from 0.5 to 40 g, 3.5–21 mo) were studied singly, in pairs, and in groups during feeding and simulated predation threat. Vertical position generally did not differ between T and N fry, but at larger size (>4 g) T fish remained closer to the surface than N fish both during feeding and predatory attacks, probably as a consequence of inherent differences in feeding motivation and later reinforcement by associative learning. This difference in vertical position was not the result of competition as it remained even after either fish in the pair had been removed. In nature, where predators may attack from above (birds) or below (fish), this kind of behaviour may translate into higher risk of predation, which could increase mortality and lower the fitness of transgenic fish, unless their increased growth rate can compensate for the increased risk‐taking.  相似文献   

18.
Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are capable of successful spawning, and can reproduce with wild-type fish from natural systems.  相似文献   

19.
Abstract Growth hormone (GH) transgenic fish have dramatically enhanced growth rates, increased oxygen demands and reactive oxygen species production. GH-transgenic coho salmon provide an opportunity to address effects of increased metabolism on physiological aging. The objective of this study was to compare oxidative stress in wild-type (WT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch) of different ages (1 and 2 years). Antioxidant enzyme activity, protein carbonyls (PC) and glutathione (GSH, GSSG) were measured. PC correlated to growth rates in individual fish. T fish exhibited lower antioxidant enzyme activities and GSH levels compared to the WT, while levels of PC and GSSG were higher. Age affects were observed in both WT and T fish; enzyme activities and GSH decreased while PC and GSSG increased. Our results support the metabolic rate theory of aging. This study aims to be a platform for continued studies of the theories of aging using fish as model organisms.  相似文献   

20.
Rahman  M. Azizur  Mak  Rohan  Ayad  Hala  Smith  Alan  Maclean  Norman 《Transgenic research》1998,7(5):357-370
Several lines of transgenic G1 and G2 tilapia fish (Oreochromis niloticus) have been produced following egg injection with gene constructs carrying growth hormone coding sequences of fish origin. Using a construct in which an ocean pout antifreeze promoter drives a chinook salmon growth hormone gene, dramatic growth enhancement has been demonstrated, in which the mean weight of the 7 month old G2 transgenic fish is more than three fold that of their non transgenic siblings. Somewhat surprisingly G1 fish transgenic for a construct consisting of a sockeye salmon metallothionein promoter spliced to a sockeye salmon growth hormone gene exhibited no growth enhancement, although salmon transgenic for this construct do show greatly enhanced growth. The growth enhanced transgenic lines were also strongly positive in a radio-immuno assay for the specific hormone in their serum, whereas the non growth enhanced lines were negative. Attempts to induce expression from the metallo thionein promoter by exposing fish to increased levels of zinc were also unsuccessful.Homozygous transgenic fish have been produced from the ocean pout antifreeze/chinook salmon GH construct and preliminary trials suggest that their growth performance is similar to that of the hemizygous transgenics. No abnormalities were apparent in the growth enhanced fish, although minor changes to skull shape and reduced fertility were noted in some fish. There is also preliminary evidence for improved food conversion ratios when growth enhanced transgenic tilapia are compared to their non-transgenic siblings.The long term objective of this study is to produce lines of tilapia which are both growth enhanced and sterile, so offering improved strains of this important food fish for aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号