首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid step-gradient purification of mitochondrial DNA   总被引:2,自引:0,他引:2  
A convenient modification of the step gradient (CsCl/ethidium bomide) procedure is described. This rapid method allows isolation of covalently closed circular DNA separated from contaminating proteins, RNA and chromosomal DNA in ca. 5 h. Large scale preparations can be performed for circular DNA from eukaryotic organelles (mitochondria). The protocol uses organelle pelleting/NaCl-sarcosyl incubation steps for mitochondria followed by a CsCl step gradient and exhibits yields equal to the conventional procedures. It results in DNA sufficiently pure to be used for restriction endonuclease analysis, subcloning, 5-end labeling, gel retention assays, and various types of hybridization.  相似文献   

2.
We report here a simple procedure for the purification of the organelle DNA. Mitochondrial DNA from Sorghum and the chloroplast DNA from Populus and spinach were purified using this protocol. The method utilizes a quick centrifugation of the isolated organelle DNA through a two step CsCl density gradient for removal of small molecular weight nucleic acids which pose a major problem for getting clean restriction patterns. This method of purification can be adopted with any isolation procedure for organelle DNA.  相似文献   

3.
Summary The inheritance of organelle DNAs in loblolly pine was studied by using restriction fragment length polymorphisms. Chloroplast DNA from loblolly pine is paternally inherited in pitch pine x loblolly pine hybrids. Mitochondrial DNA is maternally inherited in loblolly pine crosses. The uniparental inheritance of organelle genomes from opposite sexes within the same plant appears to be unique among those higher plants that have been tested and indicates that loblolly pine, and possibly other conifers, must have special mechanisms for organelle exclusion or degradation or both. This genetic system creates an exceptional opportunity for the study of maternal and paternal genetic lineages within a single species.  相似文献   

4.
We report here the simultaneous purification of chloroplast (cpDNA) and mitochondrial DNA (mtDNA) from green tissue and suspension cultures of carrot without organelle isolation. This method is based on isolating total nucleic acids from frozen tissue and separating the nuclear, chloroplast and mitochondrial fractions using sequential isopycnic sedimentation in two gradients of cesium chloride containing bisbenzamide. From 10 g of mature carrot leaves, 10 to 30μg of organelle DNA was consistently recovered from mature carrot leaves, while 30 to 50 μg was recovered from suspension cells. The method can be used to isolate chloroplast and mitochondrial DNAs from single plants without sacrificing the individual.  相似文献   

5.
Organelle DNA in plastids and mitochondria is present in multiple copies and undergoes degradation developmentally. For example, organelle DNA that is detectable cytologically using DNA-fluorescent dye disappears during pollen development. Nevertheless, nucleases involved in this degradation process remain unknown. Our recent study identified the organelle nuclease, DPD1, which has Mg2+-dependent exonuclease activity in vitro. The discovery of DPD1 emerged from Arabidopsis mutant screening and concomitant isolation of dpd1 mutants that retain organelle DNA in mature pollen. DPD1 is conserved only in angiosperms: not in other photosynthetic organisms. Despite these findings, the physiological significance of organelle DNA degradation during pollen development remains unclear because dpd1 exhibits no apparent defects in pollen viability or in the maternal inheritance of organelle DNA. We discuss a possible role of organelle DNA degradation mediated by DPD1, based on a DPD1 expression profile studied using in silico analyses.Key words: mitochondria, nuclease, organelle DNAs, plastids, pollen  相似文献   

6.
A novel noninvasive genomic DNA isolation protocol from fecal tissue, by the proteinase K digestion and guanidine hydrochloride extraction method, was assessed for the genotyping of cattle and buffalo. The epithelial tissues present on the surface of the feces were used as source for isolation of genomic DNA. The DNA isolated from fecal tissue was found to be similar as those obtained from other body tissues such as skin, brain, liver, kidney, and muscle. The quality of DNA was checked by agarose gel electrophoresis and polymerase chain reaction (PCR). We successfully amplified a 320 bp MHC class II DRB gene and a 125 bp mt-DNA D-loop region from isolated genomic DNA of cattle. Thus, the DNA isolated using this method was suitable for common molecular biology methods, such as restriction enzyme digestion and genotyping of dairy animals through PCR.  相似文献   

7.
A simple, efficient and reliable method is described for isolation of total DNA from young leaves of Amaranthus species. This procedure yields a high amount (600–800 µg DNA/g fresh leaf tissue) of good quality DNA free from contaminating proteins, polysaccharides, and coloured pigments. The DNA is suitable for digestion with several restriction endonucleases, preparation of Southern blots, and PCR amplification. The DNA has been successfully used for generating DNA fingerprint profiles and RAPD banding patterns in two species of Amaranthus. The procedure is suitable for processing of a large number of samples simultaneously.  相似文献   

8.
A rapid DNA minipreparation method was developed for rice and other plant species. This method uses an Eppendorf tube and 1-ml pipette tip to grind plant tissues, and requires only one transfer for DNA isolation. In a single day, one person can complete DNA isolation from more than 120 leaf samples. The yields of the DNA samples ranged from 2.3 to 5.2 g from 25–50 mg fresh leaf tissue. DNA samples extracted using this method from rice were completely digested with five restriction enzymes (EcoR I, EcoR V, Hind III, Mse I and Pst I) and were successfully used for AFLP and other PCR applications.  相似文献   

9.
Molecular markers for map-based cloning, marker-assisted selection in crop breeding, and genetic studies require DNA isolation from a large number of plants in a short span of time. Here we describe a modified DNA extraction method that is economical in terms of cost, time and labour. The method allows DNA extraction from as little as 0.2–0.3 g of leaves that are homogenized in zipper plastic bags, followed by DNA isolation in 1.5-mL Eppendorf tubes. By using the modified method, a DNA yield of 700–800 μg/300 mg leaf tissue was obtained from cotton and wheat samples. The quality of the DNA was quite suitable for PCR-based markers.  相似文献   

10.
The size, structure and conformation of mitochondrial and plastid genomes differ dramatically among eukaryotes. Similarly, the yield and purity of extracted organelle DNA also vary, and are crucial factors for the success of restriction mapping and sequencing experiments. We describe here procedures for the purification of organelle DNA from a broad range of eukaryotes. By emphasizing the underlying principles, these procedures will facilitate the development of new species-specific protocols. The presented purification schemes involve either isolation of organelles and subsequent extraction of DNA from this subcellular fraction, or processing of whole-cell lysates followed by CsCl gradient centrifugation to separate nuclear and organelle DNAs according to their A + T content. We have successfully used the described procedures for organelle genome sequencing from diverse eukaryotes, including non-axenic protists. Procedures can be completed in 3-5 days, typically yielding a few micrograms of DNA-ample for sequencing complete genomes.  相似文献   

11.
Extraction of nucleic acids from red algae is complicated by the presence of phycocolloids. For this reason, methods used for nucleic acid isolation from other organisms are not always amenable to use with red algal preparations; modifications in some cases lead to protocols that are time consuming and complicated, often requiring large amounts of algal tissue for starting material. Here we describe the isolation of both RNA and DNA followed by fractionation and identification of nuclear, chloroplast, and mitochondrial DNAs from a single preparation of Polysiphonia boldii Wynne and Edwards using a simple method that yielded approximately 100 μg of total RNA and 20 μg of total DNA from 1 g of frozen powdered algae. The potent protein denaturant guanidinium thiocyanate and the detergent sarkosyl were used to gently lyse the cells and organelles and immediately inhibit nuclease activity in the extract. The nucleic acids were isolated by ultracentrifugation into a dense solution of CsCl; the RNA was recovered as a pellet and the DNA as a band within the CsCl solution. Agarose gel electrophoresis of the total RNA showed discrete ribosomal RNA bands, indicating little nonspecific degradation. The nuclear, chloroplast, and mitochondrial DNAs were fractionated by density gradient ultracentrifugation in the presence of the DNA binding dye, bisbenzimide H (Hoechst 33258), which binds preferentially to DNA with a high A + T:G + C ratio, thus altering its density to a greater degree than it does that of DNA with a lower nucleotide ratio. The three fractions were identified by Southern blot analysis using heterologous gene probes specific for the different genomes. The protocol should be applicable to different types of algae. The simple nucleic acid isolation step can be performed on multiple samples simultaneously without subsequent fractionation of DNA, allowing comparison of DNA from different individuals, populations, or species.  相似文献   

12.
DNA from 19 species of microsporidia was isolated and amplified from infected host tissue that were originally prepared between the years 1946 and 1996. The smears, on glass microscope slides, were either Giemsa-stained or unstained. Methanol-fixed, Giemsa-stained smears proved to be suitable for DNA isolation; DNA was amplified from only two of 14 unstained slides. The isolated DNA was successfully amplified in PCRs using small subunit and large subunit rDNA primers and sequenced. The high efficiency of DNA isolation demonstrates the usefulness of archival and type collection slides for some molecular biology and molecular taxonomy studies.  相似文献   

13.
蚜虫基因组DNA提取方法的改进   总被引:1,自引:0,他引:1  
蚜虫基因组DNA的提取是蚜虫分子生物学研究中的难点。参照动物基因组DNA的提取方法,根据蚜虫体型微小,体表有外骨骼的特点,对SDS法作了改进。改进的方法无需用组织捣碎棒破碎虫体,操作简便。与现在常用的提取方法相比,改进的SDS法能快速、有效地提取单头蚜虫的基因组DNA,适用于RAPD随机引物和测序引物的PCR扩增。  相似文献   

14.
Most steps in plant nucleic acid isolation are easily adapted to 96-well format; however, tissue disruption typically is performed on samples individually and often is the rate-limiting step in sample processing. We have found that DNA and RNA isolation from Arabidopsis tissue can be carried out in 96-well format using a paint shaker fitted with an adapter for tissue disruption.  相似文献   

15.
Numerous methods are available for isolation of plant genomic DNA, but in practice these procedures are empirical due to variability in plant tissue composition. Consistent isolation of quality DNA from peanut (Arachis hypogaea L.) is particularly problematic due to the presence of phenolic compounds and polysaccharides. Inconsistencies in extraction results can be attributed to the age and growth stage of the plant material analyzed. Mature leaves have higher quantities of polyphenols, tannins, and polysaccharides that can contaminate DNA during isolation. We show that four published protocols could not be used to isolate peanut DNA of sufficient quality for PCR amplification or Southern hybridization. We have devised a new protocol that uses DEAE-cellulose purification to isolate peanut DNA useful for downstream applications.  相似文献   

16.
Extraction of high-quality genomic DNA from latex-containing plants   总被引:8,自引:0,他引:8  
The isolation of intact, high-molecular-mass genomic DNA is essential for many molecular biology applications including long PCR, endonuclease restriction digestion, Southern blot analysis, and genomic library construction. Many protocols are available for the extraction of DNA from plant material. However, for latex-containing Asteraceae (Cichorioideae) species, standard protocols and commercially available kits do not produce efficient yields of high-quality amplifiable DNA. A cetyltrimethylammonium bromide protocol has been optimized for isolation of genomic DNA from latex-containing plants. Key steps in the modified protocol are the use of etiolated leaf tissue for extraction and an overnight 25 degrees C isopropanol precipitation step. The purified DNA has excellent spectral qualities, is efficiently digested by restriction endonucleases, and is suitable for long-fragment PCR amplification.  相似文献   

17.
J. W. La Claire II  J. Wang 《Protoplasma》2000,213(3-4):157-164
Summary Novel extrachromosomal DNA molecules were localized in giant-celled marine green algae by organelle isolation and fluorescence in situ hybridization methodologies. Nucleic acids extracted from isolated chloroplasts ofErnodesmis verticillata andVentricaria ventricosa were greatly enriched in plasmidlike DNA species. Fluorescence in situ hybridization was employed to resolve further the subcellular location of these molecules. Cloned restriction fragments of the algal plasmidlike DNA hybridized solely to low-molecular-weight DNA in Southern blots; they did not hybridize to any chromosomal DNA. Probes were generated from these clones that either did (Northern-positive) or did not (Northern-negative) hybridize to RNA species in Northern blots. Probes specific for localizing the plasmidlike DNA were generated from the latter clones, whereas probes potentially localizing both DNA and relevant mRNA species were generated from the former ones. After hybridization and signal amplification via indirect immunofluorescence, fluorescent punctae were visible surrounding the single pyrenoid in each chloroplast with both types of probes. The punctae were arranged in a hollow spherical configuration, as resolved by confocal laser scanning microscopy. Nearly twice as many punctae per chloroplast were present inV. ventricosa (11.5) as there were inE. verticillata (6.0). The differential distribution of plasmidlike DNA within each chloroplast was in contrast to chloroplast chromosomal DNA, which occurred as multiple nucleoids scattered throughout the entire organelle. The localization of plasmidlike DNA within chloroplasts correlates well with previous sequence data indicating that these molecules contain putative open reading frames encoding protein components of photosystems I and II.Abbreviations CLSM confocal laser scanning microscopy - DAPI 4,6-diamidino-2-phenylmdole - FITC fluorescein isothiocyanate - FISH fluorescence in situ hybridization - HMW high molecular weight - LMW low molecular weight - ORF open reading frame  相似文献   

18.
线粒体是除细胞核之外唯一携带遗传物质的细胞器,其线粒体DNA(mitochondrial DNA,mtDNA)控制着线粒体一些最基本的性质,对细胞功能有着重要影响.DNA甲基化是调节基因表达的重要方式之一.研究表明mtDNA存在CpG位点的低甲基化,并且mtDNA基因的表达受核DNA(nuclear DNA,nDNA)及线粒体自身DNA甲基化的调控,mtDNA和nDNA协同作用参与机体代谢调节和疾病发生发展过程.就近年来mtDNA与DNA甲基化的关系作一综述.  相似文献   

19.
DNA is one of the most basic and essential genetic materials in the field of molecular biology.To date,isolation of sufficient and good-quality DNA is still a challenge for many plant species,though various DNA extraction methods have been published.In the present paper,a recycling DNA extraction method was proposed.The key step of this method was that a single plant tissue sample was recycled for DNA extraction for up to four times,and correspondingly four DNA precipitations(termed as the 1st,2nd,3rd and 4th DNA sample, respectively) were conducted.This recycling step was integrated into the conventional CTAB DNA extraction method to establish a recycling CTAB method.This modified CTAB method was tested in eight plant species,wheat,sorghum,barley,corn,rice,Brachypodium distachyon,Miscanthus sinensis and tung tree.The results showed that high-yield and good-quality DNA samples could be obtained by using this new method in all the eight plant species.The DNA samples were good templates for PCR amplification of both ISSR and SSR markers.The recycling method can be used in multiple plant species and can be integrated with multiple conventional DNA isolation methods,and thus is an effective and universal DNA isolation method.  相似文献   

20.
We present a simple protocol for DNA isolation from climbing cacti, genera Hylocereus and Selenicereus. The abundant polysaccharides present in Hylocereus and Selenicereus species interfere with DNA isolation, and DNA extracts, rich in polysaccharides, are poor templates for amplification using polymerase chain reaction (PCR). We used roots as the source tissue due to the lower viscosity of the extracts relative to that of other tissues. The extraction and isolation procedure we devised consists of the following steps: (1) three washes of ground tissue with the extraction buffer to remove the polysaccharides; (2) extraction with high-salt (4 M NaCl) cetyltrimethylammonium bromide (CTAB) buffer to remove the remaining polysaccharides; (3) removal of RNA by RNase; (4) phenol:chloroform extraction to remove proteins; (5) chloroform extraction to remove remaining phenols. The yields ranged from 10 to 20 g DNA/g fresh roots. DNA samples prepared by our method were consistently amplifiable in the RAPD reaction and gave reproducible profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号