首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

3.
We describe the identification and detailed expression pattern of a second Drosophila Sox gene, SoxNeuro (SoxN), highly related to mammalian group B Sox1, 2, 3 genes. SoxN is expressed in a highly dynamic pattern during embyogenesis, being associated with the development of the central nervous system (CNS), from the early steps onwards. We present strong evidence that the early SoxN neuroectoderm expression is controlled by the zygotic dorso-ventral patterning genes (dpp, sog, brk, twi).  相似文献   

4.
HTm4 is a member of a newly defined family of human and murine proteins, the MS4 (membrane-spanning four) protein group, which has a distinctive four-transmembrane structure. MS4 protein functions include roles as cell surface signaling receptors and intracellular adapter proteins. We have previously demonstrated that HTm4 regulates the function of the KAP phosphatase, a key regulator of cell cycle progression. In humans, the expression of HTm4 is largely restricted to cells of the hematopoietic lineage, possibly reflecting a causal role for this molecule in differentiation/proliferation of hematopoietic lineage cells. In this study, we show that, like the human homologue, murine HTm4 is also predominantly a hematopoietic protein with distinctive expression patterns in developing murine embryos and in adult animals. In addition, we observed that murine HTm4 is highly expressed in the developing and adult murine nervous system, suggesting a previously unrecognized role in central and peripheral nervous system development.JLK and XY contributed equally to this work  相似文献   

5.
6.
We report here a novel family of G-protein coupled receptor (GPCR) which is extraordinarily conserved among vertebrate species. This family, designated SREB (Super Conserved Receptor Expressed in Brain), consists of at least three members, termed SREB1, SREB2, and SREB3. SREB members share 52-63% amino acid identity with each other and show relatively high similarity to previously known amine amine GPCRs (approximately 25% identity). Amino acid sequence identity between human and rat orthologues is 97% for SREB1 and 99% for SREB3, while the SREB2 sequence is surprisingly completely identical between the species. Furthermore, amino acid sequence of zebrafish SREB2 and SREB3 are 94 and 78% identical to mammal orthologues. Northern blot analysis revealed that SREB members are predominantly expressed in the brain regions and genital organs. Radiation hybrid analysis localized SREB1, SREB2, and SREB3 genes to different human chromosomes, namely 3p21-p14, 7q31 and Xp11, respectively. The high sequence conservation and abundant expression in the central nervous system suggest the existence of undiscovered fundamental neuronal systems consisting of SREB family members and their endogenous ligand(s).  相似文献   

7.
A mouse nanos (nanos1) gene was cloned and its function was examined by generating a gene-knockout mouse. The nanos1 gene encodes an RNA-binding protein, which contains a putative zinc-finger motif that exhibits similarity with other nanos-class genes in vertebrates and invertebrates. Although nanos1 is not detected in primordial germ cells, it is observed in seminiferous tubules of mature testis. Interestingly, maternally expressed nanos1 is observed in substantial amounts in oocytes, but the amount of maternal RNA is rapidly reduced after fertilization, and the transient zygotic nanos1 expression is observed in eight-cell embryos. At 12.5 days postcoitum, nanos1 is re-expressed in the central nervous system and the expression continues in the adult brain, in which the hippocampal formation is the predominant region. The nanos1 -deficient mice develop to term without any detectable abnormality and they are fertile. No significant neural defect is observed in terms of their behavior to date.  相似文献   

8.
Based on homology with GLUT1-5, we have isolated a cDNA for a novel glucose transporter, GLUTX1. This cDNA encodes a protein of 478 amino acids that shows between 29 and 32% identity with rat GLUT1-5 and 32-36% identity with plant and bacterial hexose transporters. Unlike GLUT1-5, GLUTX1 has a short extracellular loop between transmembrane domain (TM) 1 and TM2 and a long extracellular loop between TM9 and TM10 that contains the only N-glycosylation site. When expressed in Xenopus oocytes, GLUTX1 showed strong transport activity only after suppression of a dileucine internalization motif present in the amino-terminal region. Transport activity was inhibited by cytochalasin B and partly competed by D-fructose and D-galactose. The Michaelis-Menten constant for glucose was approximately 2 mM. When translated in reticulocytes lysates, GLUTX1 migrates as a 35-kDa protein that becomes glycosylated in the presence of microsomal membranes. Western blot analysis of GLUTX1 transiently expressed in HEK293T cells revealed a diffuse band with a molecular mass of 37-50 kDa that could be converted to a approximately 35-kDa polypeptide following enzymatic deglycosylation. Immunofluorescence microscopy detection of GLUTX1 transfected into HEK293T cells showed an intracellular staining. Mutation of the dileucine internalization motif induced expression of GLUTX1 at the cell surface. GLUTX1 mRNA was detected in testis, hypothalamus, cerebellum, brainstem, hippocampus, and adrenal gland. We hypothesize that, in a similar fashion to GLUT4, in vivo cell surface expression of GLUTX1 may be inducible by a hormonal or other stimulus.  相似文献   

9.
Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast 'sublineages'), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.  相似文献   

10.
11.
12.
Ascidian tadpole larvae possess a primitive nervous system, which is a prospective prototype of the chordate nervous system. It is composed of relatively few cells but sufficient for complex larval behavior. Here we report on HrETR-1, a gene zygotically expressed in a large proportion of the developing neural cells of the ascidian, Halocynthia roretzi. HrETR-1 is an early neural marker which can be used for analyzing neural differentiation. HrETR-1 expression intensified in most neural cells of genes isolated to date, in both central and peripheral nervous systems including palps as early as the 110-cell stage. Using this gene as a probe, we characterized neural cells in the nervous system as well as confirming their origins. Also, we recognized three types of peripheral epidermal neurons which presumably correlate to the larval neurons previously reported for another ascidian. Among these, five bilateral neurons located in the anterior region of the trunk appeared to be derived from a8.26 blastomeres.  相似文献   

13.
14.
The expression of two forms of pp60c-src, pp60 and pp60+, was measured in the central nervous system (CNS) and the peripheral nervous system. Both forms were expressed in the CNS, whereas only pp60 was primarily detected in the peripheral nervous system. Our findings suggest that pp60+ may play a role in events important to the CNS.  相似文献   

15.
16.
17.
18.
DSC1 encodes a putative voltage-sensitive sodium channel α subunit in Drosophila melanogaster. We generated polyclonal antibodies raised against part of the DSC1 sequence to characterize the size and the distribution of these channels in the adult fly. Immunoblotting experiments indicated that the protein has a molecular weight of about 270 kDa. We also showed that DSC1 channels are found only in the neurons of the fly. The density of channels was high in synaptic regions and in most of the axonal processes that connect the various structures of the CNS. No signal was observed in the cortical cell bodies where the para channels are mainly present. The most striking result concerns the widespread distribution of DSC1 channels in the PNS, as confirmed by experiments done with the monoclonal antibody 22C10. These results strongly suggest that DSC1 and para channels may have complementary roles, at least in the adult stage. Electronic Publication  相似文献   

19.
Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS inflammation was associated with the proliferation of CD11b(+) brain cells that exhibited the dendritic cell (DC) marker CD11c. These cells constituted up to 30% of the total CD11b(+) brain cell population. In both diseases CD11c(+) brain cells displayed the surface phenotype of myeloid DC and resided at perivascular and intraparenchymatic inflammatory sites. By lacking prominent phagocytic organelles, CD11c(+) cells from inflamed brain proved distinct from other microglia, but strikingly resembled bone marrow-derived DC and thus were identified as DC. This brain DC population comprised cells strongly secreting IL-12p70, whereas coisolated CD11c(-) microglia/brain macrophages predominantly produced TNF-alpha, GM-CSF, and NO. In comparison, the DC were more potent stimulators of naive or allogeneic T cell proliferation. Both DC and CD11c(-) microglia/macrophages from inflamed brain primed naive T cells from DO11.10 TCR transgenic mice for production of Th1 cytokines IFN-gamma and IL-2. Resting microglia that had been purified from normal adult brain generated immature DC upon exposure to GM-CSF, while CD40 ligation triggered terminal maturation. Consistently, a functional maturation of brain DC was observed to occur following the onset of encephalitis. In conclusion, these findings indicate that in addition to inflammatory macrophage-like brain cells, intraparenchymatical DC exist in autoimmune and infectious encephalitis. These DC functionally mature upon disease onset and can differentiate from resident microglia. Their emergence, maturation, and prolonged activity within the brain might contribute to the chronicity of intracerebral Th1 responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号