首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical studies indicate that a single population under an Allee effect will decline to extinction if reduced below a particular threshold, but the existence of multiple local populations connected by random dispersal improves persistence of the global population. An additional process that can facilitate persistence is the existence of habitat selection by dispersers. Using analytic and simulation models of population change, I found that when habitat patches exhibiting Allee effects are connected by dispersing individuals, habitat selection by these dispersers increases the likelihood that patches persist at high densities, relative to results expected by random settlement. Populations exhibiting habitat selection also attain equilibrium more quickly than randomly dispersing populations. These effects are particularly important when Allee effects are large and more than two patches exist. Integrating habitat selection into population dynamics may help address why some studies have failed to find extinction thresholds in populations, despite well-known Allee effects in many species.  相似文献   

2.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

3.
Allee-like effects in metapopulation dynamics   总被引:4,自引:0,他引:4  
The existences of the Allee effect at the local population level and of the Allee-like effect at the metapopulation level are important for both ecology and conservation. Although there have been a great many papers on the Allee effect, they have mainly referred to only local populations and have not dealt with the relationship between the two. In this paper, we begin with local population dynamics and then construct a model including both local population and metapopulation dynamics. Then we simulate with computer at these two levels. The results indicate that the Allee-like effect in a metapopulation may emerge from the imposed Allee effect at the local population level. This threshold fraction of occupied patches below which the metapopulation goes extinct is seriously affected by the per capita migration rate, the survival rate during migration and the initial population size on the occupied patches. We also find that severe demographic stochasticity may compound the metapopulation extinction risk posed by the Allee effect. These conclusions are helpful for nature conservation, especially for the preservation of rare species.  相似文献   

4.
Consequences of large-scale processes for the conservation of bird populations   总被引:17,自引:15,他引:2  
1.  Detailed studies of population ecology are usually carried out in relatively restricted areas in which emigration and immigration play a role. We used a modelling approach to explore the population consequences of such dispersal and applied ideas from our simulations to the conservation of wild birds.
2.  Our spatial model incorporates empirically derived variation in breeding output between habitats, density dependence and dispersal. The outputs indicate that dispersal can have considerable consequences for population abundance and distribution. The abundance of a species within a patch can be markedly affected by the surrounding habitat matrix.
3.  Dispersal between habitats may result in lower population densities at the edge of good quality habitat blocks and could partially explain why some species are restricted to large habitat fragments.
4.  Habitat deterioration may not only lead to population declines within that habitat but also in adjacent habitats of good quality. This may confound studies attempting to diagnose population declines.
5.  Although mobile species have the advantages of colonizing sites within metapopulations, dispersal into poorer quality territories may markedly reduce total populations.
6.  There are two main approaches to conservation: one is to concentrate on establishing and maintaining protected areas, while the other involves conservation of the wider countryside. If dispersal is an important process then protecting only isolated areas may be insufficient to maintain the populations within them.  相似文献   

5.
Dangerously few liaisons: a review of mate-finding Allee effects   总被引:1,自引:0,他引:1  
In this paper, we review mate-finding Allee effects from ecological and evolutionary points of view. We define ‘mate-finding’ as mate searching in mobile animals, and also as the meeting of gametes for sessile animals and plants (pollination). We consider related issues such as mate quality and choice, sperm limitation and physiological stimulation of reproduction by conspecifics, as well as discussing the role of demographic stochasticity in generating mate-finding Allee effects. We consider the role of component Allee effects due to mate-finding in generating demographic Allee effects (at the population level). Compelling evidence for demographic Allee effects due to mate-finding (as well as via other mechanisms) is still limited, due to difficulties in censusing rare populations or a failure to identify underlying mechanisms, but also because of fitness trade-offs, population spatial structure and metapopulation dynamics, and because the strength of component Allee effects may vary in time and space. Mate-finding Allee effects act on individual fitness and are thus susceptible to change via natural selection. We believe it is useful to distinguish two routes by which evolution can act to mitigate mate-finding Allee effects. The first is evolution of characteristics such as calls, pheromones, hermaphroditism, etc. which make mate-finding more efficient at low density, thus eliminating the Allee effect. Such adaptations are very abundant in the natural world, and may have arisen to avoid Allee effects, although other hypotheses are also possible. The second route is to avoid low density via adaptations such as permanent or periodic aggregation. In this case, the Allee effect is still present, but its effects are avoided. These two strategies may have different consequences in a world where many populations are being artificially reduced to low density: in the first case, population growth rate can be maintained, while in the second case, the mechanism to avoid Allee effects has been destroyed. It is therefore in these latter populations that we predict the greatest evidence for mate-finding Allee effects and associated demographic consequences. This idea is supported by the existing empirical evidence for demographic Allee effects. Given a strong effect that mate-finding appears to have on individual fitness, we support the continuing quest to find connections between component mate-finding Allee effects (individual reproductive fitness) and the demographic consequences. There are many reasons why such studies are difficult, but it is important, particularly given the increasing number of populations and species of conservation concern, that the ecological community understands more about how widespread demographic Allee effects really are, and why.  相似文献   

6.
Allee effects, positive effects of population size or density on per-capita fitness, are of broad interest in ecology and conservation due to their importance to the persistence of small populations and to range boundary dynamics. A number of recent studies have highlighted the importance of spatiotemporal variation in Allee effects and the resulting impacts on population dynamics. These advances challenge conventional understanding of Allee effects by reframing them as a dynamic factor affecting populations instead of a static condition. First, we synthesize evidence for variation in Allee effects and highlight potential mechanisms. Second, we emphasize the “Allee slope,” i.e., the magnitude of the positive effect of density on the per-capita growth rate, as a metric for demographic Allee effects. The more commonly used quantitative metric, the Allee threshold, provides only a partial picture of the underlying forces acting on population growth despite its implications for population extinction. Third, we identify remaining unknowns and strategies for addressing them. Outstanding questions about variation in Allee effects fall broadly under three categories: (1) characterizing patterns of natural variability; (2) understanding mechanisms of variation; and (3) implications for populations, including applications to conservation and management. Future insights are best achieved through robust interactions between theory and empiricism, especially through mechanistic models. Understanding spatiotemporal variation in the demographic processes contributing to the dynamics of small populations is a critical step in the advancement of population ecology.  相似文献   

7.
Allee effects may render exploited animal populations extinction prone, but empirical data are often lacking to describe the circumstances leading to an Allee effect. Arbitrary assumptions regarding Allee effects could lead to erroneous management decisions so that predictive modelling approaches are needed that identify the circumstances leading to an Allee effect before such a scenario occurs. We present a predictive approach of Allee effects for polar bears where low population densities, an unpredictable habitat and harvest-depleted male populations result in infrequent mating encounters. We develop a mechanistic model for the polar bear mating system that predicts the proportion of fertilized females at the end of the mating season given population density and operational sex ratio. The model is parametrized using pairing data from Lancaster Sound, Canada, and describes the observed pairing dynamics well. Female mating success is shown to be a nonlinear function of the operational sex ratio, so that a sudden and rapid reproductive collapse could occur if males are severely depleted. The operational sex ratio where an Allee effect is expected is dependent on population density. We focus on the prediction of Allee effects in polar bears but our approach is also applicable to other species.  相似文献   

8.
Allee效应对物种的续存是潜在的干扰因素,在很大程度上将增加种群局部甚至全局灭绝的可能性。对许多物种,尤其是濒临物种更容易受其影响。将Allee效应引入囚徒困境博弈模型,通过理论分析与数值模拟相结合的方法分析讨论了Allee效应对合作进化的影响。研究结果表明:在恶劣的环境条件下,Allee效应极易使物种灭绝,不利于合作进化;在相对优越的环境条件下(死亡率较低),Allee效应促进合作进化,且Allee效应强度越强,更有利于合作进化,不过种群的空间斑块占有率也会随着Allee效应强度的增强而降低,使物种最终灭绝。  相似文献   

9.
Anthropogenic modification of the landscape, resultant habitat loss, and decades of persecution have resulted in severe decline and fragmentation of large carnivore populations worldwide. Infectious disease is also identified as a primary threat to many carnivores. In wildlife species, population demography and group persistence are strongly influenced by group or population size. This is referred to as the Allee effect, in which a population or group is at an increased risk of extinction when the number or density of individuals falls below some threshold due to ecological and/or genetic factors. However, in social mammalian species, the relationship between the number of individuals and the risk of extinction is complicated because aggregation may enhance pathogen exposure and transmission. Although theoretical studies of the interaction between infectious disease transmission and Allee effects reveal important implications for carnivore management and population extinction risk, information about the interaction has yet to be synthesized. In this paper, we assess life history strategies of medium to large carnivore species (≥2.4 kg) and their influence on population dynamics, with a special focus on infectious disease. While declining population trends are observed in 73 % of all carnivores (both social and solitary species), infectious disease is identified as a significant cause of population decline in 45 % of social carnivores and 3 % of solitary carnivores. Furthermore, where carnivores suffer a combination of rapid population decline and infectious disease, Allee effects may be more likely to impact social as compared to solitary carnivore populations. These potentially additive interactions may strongly influence disease transmission dynamics and population persistence potential. Understanding the mechanisms that can result in Allee effects in endangered carnivore populations and the manner in which infectious disease interfaces at this nexus may define the outcome of developed conservation strategies.  相似文献   

10.
Allee效应与种群的灭绝密切相关,其研究对生态保护和管理至关重要。Allee效应对物种续存是潜在的干扰因素,濒危物种更容易受其影响,可能会增加生存于生境破碎化斑块的濒危物种的死亡风险,因此研究Allee效应对种群的动态和续存的影响是必要的。从包含由生物有机体对环境的修复产生的Allee效应的集合种群模型出发,引入由其他机制形成的Allee效应,建立了常微分动力系统模型和基于网格模型的元胞自动机模型。通过理论分析和计算机模拟表明:(1)强Allee效应不利于具有生境恢复的集合种群的续存;(2)生境恢复有利于种群续存;(3)局部扩散影响了集合种群的空间结构、动态行为和稳定性,生境斑块之间的局部作用将会减缓或消除集合种群的Allee效应,有利于集合种群的续存。  相似文献   

11.
王文婷  王万雄 《生态学报》2014,34(16):4596-4602
在Dubis动力系统的基础上,建立了具有Allee效应的捕食系统模型。对系统的稳定性进行了分析,受Allee效应的影响,食饵种群可能因为种群大小处于临界点以下而趋于灭绝。通过对系统进行模拟,结果表明:不受Allee效应的影响,系统的演化属于一种理想化的情形系统到达P(平衡)点的时间较不受Allee效应影响时系统到达P点的时间短,不利于生物的进化,而在Allee效应的影响下,系统的演化将达到一个平衡状态。由此,说明Allee效应为濒临灭绝物种的管理提供了重要的理论依据,对管理部门的决策有参考指导作用。  相似文献   

12.
Lud k Berec 《Oikos》2019,128(7):972-983
Understanding how climate change affects population dynamics is crucial for assessing future of biodiversity. Here I ask how can Allee effects, occurring when mean individual fitness is reduced in rare populations, respond to increasing temperature. Despite the role Allee effects play in ecology of invasive, threatened and harvested populations, impacts of climate change on Allee effects are practically unknown. Analysis of two population models reveals that whereas the Allee effect driven by predation generally weakens as temperature increases, the Allee effect due to need of finding mates is predicted to become stronger when warming occurs. For the former model, the metabolic theory suggests that with increasing temperature prey growth rate should increase faster than predator attack rate. Increasing temperature thus weakens the Allee effect. In the latter, gypsy moth population model, mating rate increases with warming due to enhanced female?male encounter rate and temperature‐induced modifications in female and male adult emergence distributions. However, male and female mortality rates increase, too and the net effect is strengthening of the Allee effect. These results have repercussions also for pest control, indicating that augmentation of biocontrol agents may perhaps be not as effective as using pesticides or disrupting mating.  相似文献   

13.
Estimates of gene correlations among individuals within and among populations are frequently derived from statistical analyses of genetic data (e.g., F statistics). These measures can be important tools in molecular ecology and conservation, and offer important insights into population breeding structure. Using recently derived theory developed for group-structured populations, we show that fixation indices, when combined with basic population ecological and demographic data can be used to investigate population mating systems and to predict dispersal rates, trajectories and asymptotic levels of fixation indices, and effective population size. Four case studies of poikilothermic vertebrates are used to demonstrate the broad utility of evolutionary and ecological inferences afforded by group-structured models.  相似文献   

14.
AimGlobal animal populations are in decline due to destruction and degradation of their natural habitat. Understanding the factors that determine the distribution and density of threatened animal populations is therefore now a crucial component of their study and conservation. The Cheirogaleidae are a diverse family of small‐bodied, nocturnal lemurs that are widespread throughout the forests of Madagascar. However, many cheirogaleid lemurs are now highly threatened with extinction and the environmental factors that determine their distribution and population density are still little known. Here, I investigated the environmental drivers of Cheirogaleidae population density at genus level.LocationVarious forest sites across Madagascar.MethodsI investigated how six environmental variables affect Cheirogaleidae population density at the genus level via random‐effect meta‐analyses. I then used a generalized linear mixed‐effects model to identify the primary predictors of Cheirogaleidae population density. Finally, I investigated how the population density of this family of lemurs varies between protected and unprotected areas of Madagascar via a GLM analysis.ResultsMy results indicate that the relationships between the tested environmental factors and population density are genus‐specific among the Cheirogaleidae. Rather remarkably, the density of Microcebus appears to have a profoundly positive relationship with anthropogenic disturbance and a negative relationship with forest cover, a finding that is also reflected by larger population densities within unprotected areas in comparison with localities within Madagascar''s protected area network.Main ConclusionsThe results of this study are highly encouraging for the conservation of the Cheirogaleidae and highlight the remarkable resilience of these lemurs to habitat degradation and anthropogenic activity. However, this study also outlines the dearth of knowledge that we have for many species, and why these data are urgently needed to understand the biogeography and ecology of threatened animal populations and implement successful conservation.  相似文献   

15.
Combined impacts of Allee effects and parasitism   总被引:3,自引:0,他引:3  
Anne Deredec  Franck Courchamp 《Oikos》2006,112(3):667-679
Despite their individual importance for population dynamics and conservation biology, the combined impacts of Allee effects and parasitism have received little attention. We built a mathematical model to compare the dynamics of populations with or without Allee effects when infected by microparasites. We show that the influence of an Allee effect takes the form of a tradeoff. The presence of an Allee effect in host populations may protect them, by reducing the range of population sizes that allow parasite spread. Yet if infection spreads, the Allee effect weakens host populations by reducing their size and by widening the range of parasite species that lead them to extinction. These results have important implications for predicting the survival of threatened populations or the success of reintroductions, and may help define size ranges within which given populations should be maintained to prevent both epidemics and Allee effects driven extinctions.  相似文献   

16.
Critically endangered species are usually restricted to small and isolated populations. High inbreeding without gene flow among populations further aggravates their threatened condition and reduces the likelihood of their long-term survival. Chinese alligator (Alligator sinensis) is one of the most endangered crocodiles in the world and has experienced a continuous decline over the past c. 1 million years. In order to identify the genetic status of the remaining populations and aid conservation efforts, we assembled the first high-quality chromosome-level genome of Chinese alligator and explored the genomic characteristics of three extant breeding populations. Our analyses revealed the existence of at least three genetically distinct populations, comprising two breeding populations in China (Changxing and Xuancheng) and one breeding population in an American wildlife refuge. The American population does not belong to the last two populations of its native range (Xuancheng and Changxing), thus representing genetic diversity extinct in the wild and provides future opportunities for genetic rescue. Moreover, the effective population size of these three populations has been continuously declining over the past 20 ka. Consistent with this decline, the species shows extremely low genetic diversity, a large proportion of long runs of homozygous fragments, and mutational load across the genome. Finally, to provide genomic insights for future breeding management and conservation, we assessed the feasibility of mixing extant populations based on the likelihood of introducing new deleterious alleles and signatures of local adaptation. Overall, this study provides a valuable genomic resource and important genomic insights into the ecology, evolution, and conservation of critically endangered alligators.  相似文献   

17.
When a process modelling the availability of gametes is included explicitly in population models a critical depensation or Allee effect usually results. Non-spatial models cannot describe clumping and so small populations must be assumed very diffuse. Consequently individuals in small populations experience low contact rates and so reproduction is limited. In Nature invasions into new territory are unlikely to be as diffuse as those described by non-spatial models. We develop pair approximations to a probabilistic cellular automata model with independent pollination and seed setting processes (equivalently mate search and reproduction processes). Each process can be either global (population-wide) or local (within a small neighbourhood) or a mixture of the two. When either process is global the resulting model recaptures the Allee effect found in non-spatial models. However, if both processes are at least partially local we obtain a model in which Allee effects can be avoided altogether if individuals are suitably strong pollinators and colonisers. The Allee effect disappears because small populations are dramatically more clumped when colonisation is local and less wasteful of pollen when pollination is local.  相似文献   

18.
Distribution patterns of metapopulation determined by Allee effects   总被引:4,自引:0,他引:4  
  相似文献   

19.
Kiørboe T 《Oecologia》2006,148(1):181-50
I examine how the population biology of pelagic copepods depends on their mating biology using field data and a simple demographic model. Among calanoid copepods, two distinct patterns emerge. Firstly, copepods that lack seminal receptacle and require repeated mating to stay fertilized have near equal adult sex ratios in field populations. Winter population densities are orders of magnitude less than the critical population density required for population persistence, but populations survive winter seasons as resting eggs in the sediment. Population growth in these species is potentially high because they have on average a factor of 2 higher egg production rates than other pelagic copepods. Secondly, other copepods require only one mating to stay fertile, and populations of these species have strongly female-skewed adult sex-ratios in field populations. Resting eggs have not been described within this group. Winter population sizes are well predicted by the critical density required for population persistence which, in turn, is closely related to the body-size-dependent mate-search capacity. Thus, the different requirements for mating lead in the first case to a more opportunistic reproductive strategy that implies rapid colonization of the pelagic during productive seasons, and in the second case to a strategy that allows maintenance of a pelagic populations during unproductive seasons. Positive density dependent population growth during periods of low population density (‘Allee effect’) amplifies population density variation during winter into the subsequent summer, thus explaining why summer densities appear to depend more on winter densities than on current growth opportunities in pelagic copepods.  相似文献   

20.
The Allee effect can cause alternative stable states in population abundance of invasive species. Sudden eruption of invading populations from low to high abundance may be viewed as a regime shift from one alternative state to another. Previous research proposed several types of early warning signals to predict regime shifts in ecological systems such as polluted lakes and semiarid grasslands. This paper explores theoretically the potential of such indicators in predicting demographic regime shifts of invading populations. I analyzed a stochastic differential equation model for the population dynamics of an invasive species subject to Allee effects and propagule pressure. Diffusion approximation to the stochastic model suggests that persistent propagule pressure makes demographic regime shifts inevitable, but Allee effects can lengthen the mean time until regime shifts virtually indefinitely. To compare the potential of indicators, I examined standard deviation, skewness, and estimated return rates of longitudinal population abundance. I found that standard deviation showed a distinct increase as regime shifts became more likely, but skewness and return rates showed no clear trends. This result suggests that standard deviation might be a useful warning signal for forecasting an impending demographic regime shift of invading populations during the period when their abundance is still low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号