首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A deletion analysis of the Arabidopsis thaliana rbcS-1A promoter defined a 196 bp region (-320 to -125) sufficient to confer light-regulated expression on a heterologous Arabidopsis alcohol dehydrogenase (Adh) reporter gene in transgenic Nicotiana tabacum (tobacco) leaves. This region, which contains DNA sequences I, G and GT boxes, with homology to other ribulose-1,5-bisphosphate carboxylase small subunit (RBCS) gene promoter sequences, directed expression independent of orientation and relative position in the Adh promoter. Site-specific mutagenesis of these conserved sequences and subsequent expression analysis in transgenic tobacco showed that both G box and I box mutations in the context of the full (-1700 to +21) rbcS-1A promoter substantially reduced the expression of Adh and beta-glucuronidase (GUS) reporter genes. The G box has previously been shown to specifically bind in vitro a factor isolated from nuclear extracts of tomato and Arabidopsis. This factor (GBF) is distinct from the factor GT-1 which binds to adjacent GT boxes in the pea rbcS-3A promoter. Multiple mutations in putative Arabidopsis rbcS-1A promoter GT boxes had no pronounced affect on expression, possibly due to a redundancy of these sites. Experiments in which rbcS-1A promoter fragments were fused to truncated 35S CaMV (cauliflower mosaic virus) promoter--GUS reporter constructs showed that cis-acting CaMV promoter elements could partially restore expression to G-box-mutated rbcS-1A sequences.  相似文献   

4.
The operon encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the cyanobacterium Synechococcus sp. PCC7002 contains three rbc genes, rbcL, rbcX and rbcS, in this order. Introduction of translational frameshift into the rbcX gene resulted in a significant decrease in the production of large (RbcL) and small (RbcS) subunits of the Rubisco protein in Synechococcus sp. PCC7002 and in Escherichia coli. To investigate the function of the rbcX gene product (RbcX), we constructed the expression plasmid for the rbcX gene and examined the effects of RbcX on the recombinant Rubisco production in Escherichia coli. The coexpression experiments revealed that RbcX had marked effects on the production of large and small subunits of Rubisco without any significant influence on the mRNA level of rbc genes and/or the post-translational assembly of the Rubisco protein. The present rbcX coexpression system provides a novel and useful method for investigating the Rubisco maturation pathway.  相似文献   

5.
Despite being the number one fruit crop in the world, very little is known about the phylogeny and molecular biology of banana (Musa spp.). Six banana rbcS gene families encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from six different Musa spp. are presented. For a comprehensive phylogenetic study using Musa rbcS genes, a total of 57 distinct rbcS sequences was isolated from six accessions that contained different combinations of the A and B ancestral/parental genomes. As a result, five of the six members of the rbcS gene family could be affiliated with the A and/or B Musa genomes and at least three of the six gene families most likely existed before Musa A and B genomes separated. By combining sequence data with quantitative real-time PCR it was determined that the different Musa rbcS gene family members are also often multiply represented in each genome, with the highest copy numbers in the B genome. Expression of some of the rbcS genes varied in intensity and in different tissues indicating differences in regulation. To analyse and compare regulatory sequences of Musa rbcS genes, promoter and terminator regions were cloned for three Musa rbcS genes. Transient transformation assays using promoter-reporter-terminator constructs in maize, wheat, and sugarcane demonstrated that the rbcS-Ma1, rbcS-Ma3, and rbcS-Ma5 promoters could be useful for transgene expression in heterologous expression systems. Furthermore, the rbcS-Ma1 terminator resulted in a 2-fold increase of transgene expression when directly compared with the widely used Nos terminator.  相似文献   

6.
7.
Transgenic plants are increasingly used as production platforms for various proteins, yet protein expression levels in the range of the most abundant plant protein, ribulose-1,5-bisphosphate carboxylase have not yet been achieved by nuclear transformation. Suitable gene regulatory 5' and 3' elements are crucial to obtain adequate expression. In this study an abundantly transcribed member (rbcS1) of the ribulose-1,5-bisphosphate carboxylase small-subunit gene family of chrysanthemum (Chrysanthemum morifolium Ramat.) was cloned. The promoter of rbcS1 was found to be homologous to promoters of highly expressed rbcS gene members of the plant families Asteraceae, Fabaceae and Solanaceae. The regulatory 5' and 3' non-translated regions of rbcS1 were engineered to drive heterologous expression of various genes. In chrysanthemum, the homologous rbcS1 cassette resulted in a beta-glucuronidase (gusA) accumulation of, at maximum, 0.88% of total soluble protein (population mean 0.17%). In tobacco (Nicotiana tabacum L.), the gusA expression reached 10% of total soluble protein. The population mean of 2.7% was found to be 7- to 8-fold higher than for the commonly used cauliflower mosaic virus (CaMV) 35S promoter (population mean 0.34%). RbcS1-driven expression of sea anemone equistatin in potato (Solanum tuberosum L.), and potato cystatin in tomato (Lycopersicon esculentum Mill.) yielded maximum levels of 3-7% of total soluble protein. The results demonstrate, that the compact 2-kb rbcS1 expression cassette provides a novel nuclear transformation vector that generates plants with expression levels of up to 10% of total protein.  相似文献   

8.
Rice (Oryza sativa L.) plants with decreased ribulose-1,5-bisphosphate carboxylase (Rubisco) were obtained by transformation with the rice rbcS antisense gene under the control of the rice rbcS promoter. The primary transformants were screened for the Rubisco to leaf N ratio, and the transformant with 65% wild-type Rubisco was selected as a plant set with optimal Rubisco content at saturating CO2 partial pressures for photosynthesis under conditions of high irradiance and 25[deg]C. This optimal Rubisco content was estimated from the amounts and kinetic constants of Rubisco and the gas-exchange data. The R1 selfed progeny of the selected transformant were grown hydroponically with different N concentrations. Rubisco content in the R1 population was distributed into two groups: 56 plants had about 65% wild-type Rubisco, whereas 23 plants were very similar to the wild type. Although the plants with decreased Rubisco showed 20% lower rates of light-saturated photosynthesis in normal air (36 Pa CO2), they had 5 to 15% higher rates of photosynthesis in elevated partial pressures of CO2, (100-115 Pa CO2) than the wild-type plants for a given leaf N content. We conclude that the rice plants with 65% wild-type Rubisco show a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and high irradiance.  相似文献   

9.
10.
Arabidopsis rbcS genes are differentially regulated by light.   总被引:4,自引:2,他引:2       下载免费PDF全文
Individual members of the Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (rbcS) gene family are differentially regulated by light of different qualities. In 10-d-old etiolated seedlings, the expression of only three of the four genes is under inductive phytochrome control. rbcS mRNA levels reach a maximum (3- to 5-fold higher than the dark level) about 6 h after a red light pulse, but the rate of decay differs among the genes. Moreover, rbcS 2B requires a higher fluence for induction. At early stages of development, rbcS 1A, 2B, and 3B are highly expressed in the dark and cannot be further induced by red light, indicating a developmental component in the overall regulatory mechanism. Continuous light experiments indicate that high-irradiance responses may play a role in the induction of at least three of the four rbcS genes. Under conditions of phytochrome saturation, rbcS 1A is insensitive to blue light pulses, whereas among the three B locus genes, at least rbcS 3B appears to respond to a blue-light photoreceptor. These results add to the data suggesting that individual members of rbcS gene families in higher plants may be subject to a variety of differing regulatory mechanisms.  相似文献   

11.
The small subunit (SS) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a nuclear gene-encoded protein that is imported into chloroplasts where it assembles with the large subunit (LS) after removal of the transit peptide to form Rubisco. We have explored the possibility that the severe deficiency in photosynthesis exhibited in nuclear transgenic tobacco (line alpha5) expressing antisense rbcS coding DNA that results in low SS and Rubisco protein content [Rodermel et al. (1988) Cell 55: 673] could be complemented by introducing a copy of the rbcS gene into its plastid genome through chloroplast transformation. Two independent lines of transplastomic plants were generated, in which the tobacco rbcS coding sequence, either with or without the transit sequence, was site-specifically integrated into the plastid genome. We found that compared with the antisense plants, expression of the plastid rbcS gene in the transplastomic plants resulted in very high mRNA abundance but no increased accumulation of the SS and Rubisco protein or improvement in plant growth and photosynthesis. Therefore, there is a limitation in efficient translation of the rbcS mRNA in the plastid or an incorrect processing and modification of the plastid-synthesized SS protein that might cause its rapid degradation.  相似文献   

12.
A new class of binary vectors has been constructed, containing the origin of replication of the W-type plasmid Sa. These vectors are designed to express foreign genes in plants under control of the TR gene 2' promoter or the promoter of a light-inducible ribulose-1,5-bisphosphate carboxylase small subunit gene of Arabidopsis thaliana.  相似文献   

13.
14.
15.
Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco) located in the chloroplast is the most abundantprotein in the leaves of light-grown plants. This enzymecatalyzes the first step in net photosynthetic CO2 fixationand photorespiration. The native Rub…  相似文献   

16.
17.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

18.
The primary structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from the marine diatom Cylindrotheca sp. strain N1 has been determined. Unlike higher plants and green algae, the genes encoding the large and the small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase are chloroplast-encoded and closely associated (Hwang and Tabita, 1989). The rbcL and rbcS genes in strain N1 are cotranscribed and are separated by an intergenic region of 46 nucleotide base pairs. Ribosome binding sites and a potential promoter sequence were highly homologous to previously determined chloroplast sequences. Comparison of the deduced primary structure of the diatom large and small subunits indicated significant homology to previously determined sequences from bacteria; there was much less homology to large and small subunits from cyanobacteria, green algae, and higher plants. Although high levels of recombinant diatom large subunits could be expressed in Escherichia coli, the protein synthesized was primarily insoluble and incapable of forming an active hexadecameric enzyme. Edman degradation studies indicated that the amino terminus of the large subunit isolated from strain N1 was blocked, suggesting that the mechanism responsible for processing and subsequent assembly of large and small subunits resembles the situation found with other eucaryotic ribulose-1,5-bisphosphate carboxylase/oxygenase proteins, despite the distinctive procaryotic gene arrangement and sequence homology.  相似文献   

19.
20.
香蕉rbcS基因启动子的克隆及序列分析   总被引:1,自引:0,他引:1  
以巴西香蕉为材料,根据已经获得的香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的全长cDNA序列设计1对专一引物,通过PCR扩增得到了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基的基因组全长,序列长811 bp,含有2个内含子。根据其基因组序列设计引物,采用SEFA-PCR方法,以总DNA为模板克隆了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的启动子序列,长1 681 bp。用PLACE软件分析发现该序列具有启动子的基本元件TATA-box、CAAT-box,包含多个胁迫诱导元件,如光诱导元件、赤霉素、低温诱导元件、昼夜节律调控元件等。该序列的克隆与分析为进一步研究香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的表达调控奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号