首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lesser cornstalk borer, Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae) is an important pest of sugarcane (a complex hybrid of Saccharum spp.) in southern Florida. Reproductive and life table parameters for E. lignosellus were examined at nine constant temperatures from 13 to 36 °C with sugarcane as the larval food source. The pre- and postoviposition periods decreased with increasing temperatures and reached their minimums at 33 and 36 °C, respectively. The oviposition period was longest at 27 °C. The mean fecundity, stage-specific survival, stage-specific fecundity, intrinsic rate of increase, and finite rate of increase were greatest at 30 °C and decreased with increasing or decreasing temperature. The net reproductive rate was greatest at 27 °C. The Logan-6 model best described the relationship between temperature and intrinsic rate of increase. The generation and population doubling times were longest at 13 and shortest at 33 and 30 °C, respectively. The most favorable temperatures for E. lignosellus population growth were between 27 and 33°C. Life table parameters for E. lignosellus reared on sugarcane were greater than for the Mexican rice borer [Eoreuma loftini (Dyar) (Lepidoptera: Crambidae)] reared on an artificial diet at 30 °C. The intrinsic rates of increase for the sugarcane borer [Diatraea saccharalis (F.) (Lepidoptera: Crambidae)] reared on sugarcane or corn were the same as for E. lignosellus reared on sugarcane at 27 °C, but the net reproductive rate was four times higher for the former than the latter borer species.  相似文献   

2.
Genetic prerequisites for the evolution of sexual dimorphism, sex-specific heritabilities and low or negative genetic correlations between homologous traits in males and females are rarely found. However, sexual dimorphism is evolving rapidly following environmental change, suggesting that sexual dimorphism and its genetic background could be environmentally sensitive. Yet few studies have explored the sensitivity of the genetic background of sexual dimorphism on environmental variation. In this study, on Drosophila melanogaster, we used a large nested full-sib-half-sib breeding design where families were split into four different developmental temperatures: two constant temperature treatments of 25 and 30 °C and two cycling temperatures with means of 25 and 30 °C, respectively. After emergence, we tested heat shock tolerance of adult flies. We found that sexual dimorphism was strongly affected by temperature during development. Moreover, we found that female heritability was significantly lower in flies developing at hot temperature and more so under hot and cycling temperatures. Interestingly, most of the genetic variation for heat shock tolerance was orthogonal (i.e. noncorrelated) between sexes, allowing independent evolution of heat shock tolerance in males and females. These findings give support to the hypothesis that the evolution of sexual dimorphism can be influenced by the environments experienced during development.  相似文献   

3.
Cold hardiness of Helicoverpa zea (Lepidoptera: Noctuidae) pupae   总被引:1,自引:0,他引:1  
An insect's cold hardiness affects its potential to overwinter and outbreak in different geographic regions. In this study, we characterized the response of Helicoverpa zea (Boddie) pupae to low temperatures by using controlled laboratory measurements of supercooling point (SCP), lower lethal temperature (LT(50)), and lower lethal time (LLTime). The impact of diapause, acclimation, and sex on the cold hardiness of the pupae also were evaluated. Sex did not significantly affect the SCP, LT(50), or LLTime. However, the mean SCP of diapausing pupae (-19.3°C) was significantly lower than nondiapausing pupae (-16.4°C). Acclimation of nondiapausing pupae to constant temperatures from 10 to 20°C before supercooling also produced a significantly lower SCP than nondiapausing pupae held at 25°C. The LT(50)s of nondiapausing and diapausing were not significantly different, but confirmed that H. zea pupae are chill-intolerant because these lethal temperatures are warmer than the corresponding mean SCPs. Diapausing pupae survived longer than nondiapausing pupae at the same, constant, cold temperatures, a finding consistent with the SCP results. Both of these results suggest enhanced cold hardiness in diapausing pupae. When laboratory results were compared with field temperatures and observed distributions of H. zea in the contiguous United States, the laboratory results corroborated what is currently perceived to be the northern overwintering limit of H. zea; approximately the 40(th) parallel. Moreover, our research showed that areas north of this limit are lethal to overwintering pupae not because of low temperature extremes, but rather the length of time spent at near-zero temperatures.  相似文献   

4.
The effect of constant temperatures on the development time from first instar to adult emergence was studied in Culex eduardoi Casal & García reared at 7, 10, 15, 20, 25, 30 or 33°C. Data were adjusted to the linear degree-day model and the nonlinear Briére model. According to the linear model, the development time was inversely related to the rearing temperatures between 7°C and 25°C. Maximum mortality (100%) was recorded at temperatures > 30°C. According to the linear model, the development threshold temperature and thermal constant were 5.7°C and 188.8 degree days, respectively. The lower and upper threshold temperatures and the optimum temperature for the nonlinear model were -2.3, 30.0 and 28.1°C, respectively.  相似文献   

5.
Liu Z  Gong P  Wu K  Sun J  Li D 《Journal of insect physiology》2006,52(10):1012-1020
Summer diapause in the cotton bollworm, Helicoverpa armigera (Hübner), which prolongs the pupal stage, particularly in males, is induced by high temperatures. In the laboratory, summer-diapausing pupae of H. armigera were induced at high temperatures (33-39 degrees C) with a photoperiod of LD8:16; winter-diapausing and non-diapausing pupae, cultured at 20 degrees C with a photoperiod of LD8:16 and at 27 degrees C, LD16:8, respectively, acted as a control. Retention time of eye spots, weight, and lipid and glycogen levels were compared. At high temperatures, both body weight and energy storage capacity were much higher in summer-diapausing pupae than in non-diapausing pupae reared at 33-39 degrees C. At temperatures (>33 degrees C) high enough to maintain summer diapause, the eye spots of summer-diapausing pupae did not move during the 30-day experiment. However, eye spots of summer-diapausing pupae placed at 30 degrees C began to move about 10 days after they were transferred, significantly later than in non-diapausing pupae reared at 33-39 degrees C or non-diapausing pupae reared at 27 degrees C, which initiated eye spot movement 2 days after pupation. The differences in retention time of eye spots between summer- and winter-diapausing pupae shows that winter diapause is more intense than summer diapause in this insect. The weight loss, and lipid and glycogen metabolism curves indicate that the summer-diapausing pupae's metabolism is very low. We conclude that summer diapause in the cotton bollworm is a true diapause and that the summer diapause enables the cotton bollworm to withstand the high temperatures of summer.  相似文献   

6.
The brown spruce longhorn beetle, Tetropium fuscum (F.), is an invasive wood-boring species in eastern Canada. Gas chromatographic/electroantennographic (GC/EAD) analyses of Norway and red spruce volatiles detected a number of consistent EAD-active responses to compounds that are known to be stress-induced in spruce. The effects of these EAD-active compounds on various aspects of adult behavior were tested. In two-choice olfactometer assays, a monoterpene spruce blend, (R)-(-)-linalool, (3Z,6E)-α-farnesene, (E)-β-farnesene and spruce essential oil were attractive to both sexes. However, when they were combined with the male-produced pheromone (fuscumol), they elicited a sex-specific response: females were significantly attracted to combinations of fuscumol plus either (3Z,6E)-α-farnesene, (E)-β-farnesene and spruce essential oil but males were not. Fuscumol alone was unattractive to either sex in the olfactometer. Males exposed to fuscumol, (3Z,6E)-α-farnesene, or a combination of both, but not (E)-β-farnesene, were more likely to engage in the pheromone calling posture relative to controls. Both the monoterpene spruce blend and spruce essential oil elicited significantly greater trap capture of both sexes of T. fuscum in the presence of fuscumol and ethanol than (3Z,6E)-α-farnesene or (R)-(-)-linalool, which did not elicit trap capture alone or in combination with fuscumol. The data support the hypothesis that stress-induced sesquiterpene components, such as (3Z,6E)-α-farnesene, are important for mediating close-range attraction and behavior in T. fuscum while the monoterpene components are important for long-range processes (trap capture).  相似文献   

7.
1. 1. The mean durations of development in the pupae of Drosophila melanogaster (Meigen) and their survival were measured at combinations of six constant temperatures (15, 20, 22.5, 25, 27.5 and 30°C) and up to 11 levels of relative humidity. The thermal survival range for the pupae is between 15 and 30°C, and the humidity viable range is between 60 and 100% RH.
2. 2. The percentage water loss of the pupae was measured at six constant temperatures and four levels of relative humidity. There was a rapid increase in the percentage of water lost during the first 24 h exposure at all tested conditions. However, pupae reared at 100% RH at each constant temperature, sustained the lowest water loss. The percentage water loss increased as temperature increased, as humidity decreased and also with time.
3. 3. The duration of larval development studied at six constant temperatures (15, 20, 22.5, 25, 27.5 and 30°C) was inversely related to temperature. A wide range of alternating temperature regimes had a small, though statistically significant, accelerative effect on larval developmental time. Thus, the present results may be used as a basis for modelling development under changing temperatures, with the assumption that the developmental rate is nearly identical to that from a series of constant temperatures.
  相似文献   

8.
The effects of photoperiod and temperature on the induction and termination of facultative pupal diapause in Helicoverpa armigera (Lepidoptera: Noctuidae) were investigated under laboratory conditions. Exposing H. armigera larvae to both constant and fluctuating temperature regimes with a mean of 25°C and 20°C resulted in a type-III photoperiodic response curve of a short-long day insect. The long-day critical daylengths for diapause induction were ten hours and 12 hours at the constant temperatures of 25°C and 20°C, respectively. Higher incidences of diapause and higher values both for the longer and the shorter critical photoperiods for diapause induction were observed at fluctuating regimes compared with the corresponding constant ones. At alternating temperatures, the incidence of diapause ranged from 4.2% to 33.3% and was determined by the temperature amplitude of the thermoperiod and by the interaction of cryophase or thermophase with the photoperiod. Helicoverpa armigera larvae seem to respond to photoperiodic stimuli at temperatures >15°C and <30°C; all insects entered diapause at a constant temperature of 15°C, whereas none did so at a constant temperature of 30°C under all the photoperiodic regimes examined. Although chilling was not a prerequisite for diapause termination, exposure of diapausing pupae to chilling conditions significantly accelerated diapause development and the time of adult emergence. Therefore, temperature may be the primary factor controlling the termination of diapause in H. armigera.  相似文献   

9.
The effect of temperature on development and survival of Chilocorus bipustulatus L. (Coleoptera: Coccinellidae), a predator of many scale insects, was studied under laboratory conditions. The duration of development of egg, first, second, third, and fourth larval instars, pupa, and preovioposition period at seven constant temperatures (15, 17.5, 20, 25, 30, 32.5, and 35°C) was measured. Development time decreased significantly with increasing temperature within the range 15-30°C. Survival was higher at medium temperatures (17.5-30(ο)C) in comparison with that at more extreme temperature regimens (15 and >30(ο)C). Egg and first larval instars were the stages where C. bipustulatus suffered the highest mortality levels at all temperatures. The highest survival was recorded when experimental individuals were older than the third larval instar. Thermal requirements of development (developmental thresholds, thermal constant, optimum temperature) of C. bipustulatus were estimated with application of linear and one nonlinear models (Logan I). Upper and lower developmental thresholds ranged between 35.2-37.9 and 11.1-13.0°C, respectively. The optimum temperature for development (where maximum rate of development occurs) was estimated at between 33.6 and 34.7°C. The thermal constant for total development was estimated 474.7 degree-days.  相似文献   

10.
Personality has been observed in a variety of animal taxa with important implications in ecology and evolution. Exploring the influence of environmental temperature during early life on personality could help to understand the ontogeny of this phenotypic trait in animals. In this study, we reared newborn mosquitofish Gambusia affinis at high (30°C) and low (25°C) water temperatures and measured their shyness and exploration upon sexual maturity. We tested the repeatability of each behavioral trait; the correlation between them; and the effects of rearing temperature, sex, and body length on the behaviors. When growing up at low temperatures, female fish exhibited repeatability in shyness and exploration, and males exhibited marginal repeatability in shyness. However, neither of the 2 behaviors were repeatable when the fish were reared at high temperatures. There was a negative correlation between shyness and exploration, indicating that the 2 behaviors comprise a behavioral syndrome in this species. Mosquitofish reared at high temperatures were more explorative than those reared at low temperatures, while there was no difference in shyness between the 2 treatments. Body length and sex had no significant effects on the average values of the 2 behaviors. The results indicate that environmental temperature during early life could shape the personality of mosquitofish and modify the average of the behavioral traits. These findings might provide insights to understand the ontogeny of animal personality and how changes in environmental temperature influence animal dispersal by shaping their personality.  相似文献   

11.
Abstract The white grub Dasylepida ishigakiensis has a 2‐year life cycle and spends approximately 9 months as a nonfeeding larva, pupa and adult on a subtropical island. Evidence is presented indicating that this beetle has two diapauses that appear to synchronize this long life cycle with the seasons. Larvae exposed to 20, 22.5, 25 and 27.5 °C late in the third (last) stadium pupate rapidly except for some individuals kept at the highest temperature. The latter pupate upon transfer to 22.5 °C, indicating that larval diapause is maintained at high temperature but terminates upon transfer to a lower temperature. Pupal development is directly temperature‐dependent in the range 20–30 °C. Adults develop reproductive organs (i.e. the ovary in females and the seminal vesicles and accessory glands in males) rapidly at 15 and 20 °C, whereas those kept at 25 °C take a long time to do so. Ovarian development is completely suppressed at 30 °C but initiated upon transfer to 20 °C. In the laboratory, males with well‐developed reproductive organs mate even with sexually immature females , whereas females with undeveloped ovaries show no sexual behaviour. Although the two diapauses of this species are thermally regulated (i.e. a characteristic commonly expressed by insects in summer diapause), adults of this beetle emerge from pupae late in the autumn and remain in the soil for 2 months. Adult diapause effectively serves to synchronize the time of sexual maturation with the coldest month of the year.  相似文献   

12.
Helicoverpa armigera (Hübner) exhibits a facultative pupal diapause, which depends on temperature and photoperiod. Pupal diapause is induced at 20 degrees C by short photoperiods and inhibited by long photoperiods during the larval stage. However, in some pupae (35% of males and 57% of females) of a non-selected field population from Okayama Prefecture (34.6 degrees N), diapause is not induced by short photoperiods. In the present experiment, the importance of temperature for diapause induction was studied in the non-diapausing strain, which was selected from such individuals reared at 20 degrees C under a short photoperiod of 10L:14D. Furthermore, the sensitive stage for thermal determination of pupal diapause was determined by transferring larvae of various instars and pupae between 20 degrees C and 15 degrees C. Diapause was induced by 15 degrees C without respect to photoperiod. When larvae or pupae reared from eggs at 20 degrees C under a short or a long photoperiod were transferred to 15 degrees C in the periods of the middle fifth instar to the first three days after pupation, the diapause induction rate was significantly reduced in both males and females, especially in females. In contrast, when larvae or pupae reared at 15 degrees C were transferred to 20 degrees C in the same periods, diapause was induced in males, but not in females. However, the diapause induction rate of pupae transferred to 20 degrees C on the fourth day after pupation was significantly increased in females. The results show that temperature is the major diapause cue in the photoperiod-insensitive strain and the periods of middle fifth larval instar to early pupal stage are the thermal sensitive stages for pupal diapause induction with some different responses to temperatures between males and females in H. armigera.  相似文献   

13.
We asked whether climate change might affect the geographic distributions of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). We tested the effects of temperature, diet and the presence of congeneric species on the performance of immature stages of these two aedine species in the laboratory. Mosquitoes in three different species-density combinations were reared at four constant temperatures (20 °C, 25 °C, 30 °C, 35 °C) on low- or high-level diets. Of the four temperatures tested, mortality increased only at 35 °C in both species. Mortality was higher on the high-level diet than on the low-level diet at 35 °C, but not at other temperatures. The presence of congeneric species had a significant positive effect on mortality in Ae. albopictus, but not in Ae. aegypti. Both species developed more quickly at higher temperatures within the range of 20-30 °C; development was not enhanced at 35 °C. Population growth of Ae. albopictus was more stable, regardless of diet and temperature; that of Ae. aegypti varied more according to these two factors. These species-specific attributes may help to explain the latitudinal distribution of the mosquitoes and degree of species dominance where they are sympatric.  相似文献   

14.
The effect of temperature on the development, survivorship, fecundity, and life table parameters of Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), was studied at seven constant temperatures of 17.5, 20, 22.5, 25, 27.5, 30, and 32.5°C. Preliminary experiments showed that no development was observed at 15 and 35°C. All individuals completed development and females laid eggs from 20 to 30°C. There was a significant decrease in male and female longevity with increasing temperatures from 20 to 30°C. The longest and shortest longevity were 203.5 and 73.7 d for males, and 178.7 and 57.6 d for females, respectively. Females produced on average 62.7, 88.9, 116.8, 70.0, and 47.3 eggs and the life expectancy for a newborn egg was 171.6, 148.7, 114.9, 89.2, and 94.8 d at 20, 22.5, 25, 27.5 and 30°C, respectively. Life history data were analyzed by using an age-stage, two-sex life table. The intrinsic rate of increase (r) and the finite rate of increase (λ) of O. nipae increased with increasing temperatures from 20 to 30°C, while the mean generation time (T) decreased within this temperature range. The r was 0.0155, 0.0249, 0.0339, 0.0361, and 0.0383 d(-1) at 20, 22.5, 25, 27.5, and 30°C, respectively. The net reproductive rate (r(0)) was highest at 25°C (35.0 offspring), and lowest at 20°C (17.0 offspring). T was shortest at 30°C (76.4 d). The results showed that temperature greatly affected the fecundity and life table parameters of O. nipae, and a suitable temperature for population development and fecundity was at 25°C. The life table data can be used for the projection of population growth and evaluation of control programs.  相似文献   

15.
低温对小菜蛾实验种群的影响   总被引:1,自引:3,他引:1  
研究了低温(<8℃)对小菜蛾的发育、存活和繁殖的影响结果表明,卵和蛹在4℃和6℃下死亡率随处理时间的延长而增加,在分别处理55d和70d后,卵和蛹全部死亡;经4℃和6℃处理的蛹,在16℃下羽化成虫的平均产卵量随处理时间的延长而减少,处理45d时,产卵量均为0小菜蛾幼期各虫态在0℃以下,死亡率随低温强度加大和处理时问的延长而增高就耐寒力而言,3龄幼虫和蛹最强,其次是2龄和4龄幼虫,卵和1龄幼虫的耐寒力最弱不同低温和时间处理小菜蛾幼期虫态对其后继虫态的发育历期有较大影响,总体说来,经过处理的小菜蛾幼期虫态,其后继虫态的发育历期普遍延长,一般处理某一虫态对其相邻虫态发育历期的影响最大小菜蛾蛹经低温处理后其羽化成虫的产卵量随着蛹期所经历低温强度的增强和时间延长而减少。  相似文献   

16.
The role of host plant-derived volatile substances on the behaviour of adult codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae) is poorly understood. We tested the response of females and males to a range of -farnesene dosages. Natural -farnesene from apples contains the E,E and Z,E isomers in varying proportions. No difference in the response of C. pomonella to preparations containing two different proportions of the E,E and Z,E isomers was noted (77:20.7 or 1.2:84.7% E,E and Z,E isomers respectively), indicating a similar bioactivity of E,E and Z,E -farnesene on codling moth. A marked sexual dimorphism was found to increasing dosages of -farnesene. Females were attracted to low dosages (starting from 63.4 ng) and repelled by high dosages (ending at 12 688 ng). The dose response over this concentration range was linear with a negative slope. Both mated and virgin females responded similarly in kind but differently in degree, both attraction and repellency being more pronounced in mated females. Males were neither attracted nor repelled over a large dose range (63.4 to 12 688 ng) except the highest rate which was attractive. This indicates a stronger dependency of females on plant-derived volatiles.  相似文献   

17.
Oomyzus sokolowskii is alarval-pupal parasitoid of diamondback moth, Plutella xylostella. In a host stage preference test, the parasitoid parasitised all larval and pupal stages, but exhibited a strong preference for larvaeover prepupae or pupae, and did not show a preference among the larval instars. At 25°C, the developmental time, number and sex ratio of offspring per host pupa, and successful parasitism did not differ significantly among parasitoids reared from host larvae of different instars, indicating similar host suitability between larvae of different instars. Mean developmental times from egg to adult at 20, 22.5, 25, 30, 32.5, and 35°C were 26.5,21.0, 16.0, 12.7, 11.9 and 13.4 days, respectively. The favourable temperature range for development, survival, and reproduction of the parasitoid was 20--30°C. However, wasps that developed and emerged at a favourable temperature could parasitise effectively at 32--35°C for 24 hours. Life-fertility table studies at 20, 25, and 30°C showed that each female wasp on average parasitised 3.1, 13.2, 6.8 larvae of diamondback moth and produced 20.5, 92.1, 50.4 offspring, respectively, during her lifetime. The highest intrinsic rate of natural increase (r m) of 0.263 female/day was reached at 30°C as a result of the short mean generation time at this temperature compared to that at 20 and 25°C, suggesting that the parasitoid had the highest potential for population growth at relatively high temperatures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Larvae of Aedes aegypti, transovarially infected with Edhazardia aedis, were reared between 20 and 36 degrees C to determine the influence of temperature on the development of the parasite and the infected host. Development of the parasite was evaluated based on spore yield and size. The predicted optimum temperature for maximum spore production of E. aedis in A. aegypti was 30.8 degrees C. The results demonstrate that the E. aedis-A. aegypti system has a wide temperature tolerance; whereas spore yield will be lower at unfavorable temperatures, the host will remain infected. Additionally, spores were significantly smaller from individual reared at 34 degrees C than those reared at either 20 or 27 degrees C. Development of the infected host was evaluated based on pupal weight and time of pupation. Infected pupae were significantly larger than uninfected pupae. There was also a significant difference in the pupation rate between controls and infected A. aegypti larvae. Controls had a 50% cumulative pupation time (CPT50) of 65.7 degree days and infected individuals a CPT50 of 76.6 degree days.  相似文献   

19.
在预蛹期,高温处理能诱导棉铃虫蛹进入夏滞育。本实验着重就33~39℃的变温下滞育蛹和未滞育蛹的失重动态进行了对比研究,同时以常温(27℃)下蛹作为参照。研究发现: 在33~39℃的变温条件下,棉铃虫化蛹率显著低于其在常温下的化蛹率,且所化蛹中有63.2%的雄性和10.9%的雌性进入高温夏滞育,其中高温滞育蛹和未滞育蛹分别都轻于正常发育蛹。化蛹后第2日至第5日期间,高温滞育蛹失重量显著低于高温未滞育蛹和正常发育蛹的失重量,分别为3.62、13.30和5.49 mg;蛹期总失重量结果与化蛹后第2~5日间蛹失重量趋势一致,高温滞育蛹、未滞育蛹和正常发育蛹失重量分别为15.60、49.35和26.30 mg。蛹失重动态研究发现高温滞育蛹在夏滞育期间其失重曲线平缓,显著低于高温未滞育蛹和正常发育蛹;高温滞育蛹滞育解除后,其失重曲线与正常发育蛹的失重趋势基本一致。结果表明,棉铃虫夏滞育蛹能通过维持低的代谢水平来度过不利环境,具有一定的生态适应意义。  相似文献   

20.
Larvae of Chironomus crassicaudatus Malloch were reared individually at nine constant temperatures from 12.5 to 32.5 degrees C (2.5 degrees C increments) for 120 d. Duration of immature stages (egg, four instars, and pupa), head capsule width of fourth instars, and wing length were recorded. Some adults emerged at all temperatures, except at 12.5 degrees C where individuals developed to fourth instars during the experiment. Sharpe and DeMichele's four-parameter model with high-temperature inhibition described the temperature-dependent developmental rates. The slowest development was observed at 15 degrees C, with developmental rate peaking between 25 and 27.5 degrees C. Developmental rate increased rapidly with increasing temperature up to 20 degrees C, slowed between 20 and 27.5 degrees C, and decreased at temperatures >27.5 degrees C. No developmental inhibition at high temperatures was observed in eggs. The most apparent high-temperature inhibition of development was recorded in fourth instars, which comprised the largest proportion of developmental time. Males developed faster than females, but females had wider larval head capsules and longer wings than males. Adult size was negatively related with temperature in both sexes, but this relationship was steeper in males than in females. Larval size peaked at 20 degrees C, whereas the head capsule width was reduced at temperatures higher and lower than 20 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号