首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
PKA anchoring proteins (AKAPs) optimize the efficiency of cAMP signaling by clustering interacting partners. Recently, AKAP79 has been reported to directly bind to adenylyl cyclase type 8 (AC8) and to regulate its responsiveness to store-operated Ca(2+) entry (SOCE). Although AKAP79 is well targeted to the plasma membrane via phospholipid associations with three N-terminal polybasic regions, recent studies suggest that AKAP79 also has the potential to be palmitoylated, which may specifically allow it to target the lipid rafts where AC8 resides and is regulated by SOCE. In this study, we have addressed the role of palmitoylation of AKAP79 using a combination of pharmacological, mutagenesis, and cell biological approaches. We reveal that AKAP79 is palmitoylated via two cysteines in its N-terminal region. This palmitoylation plays a key role in targeting the AKAP to lipid rafts in HEK-293 cells. Mutation of the two critical cysteines results in exclusion of AKAP79 from lipid rafts and alterations in its membrane diffusion behavior. This is accompanied by a loss of the ability of AKAP79 to regulate SOCE-dependent AC8 activity in intact cells and decreased PKA-dependent phosphorylation of raft proteins, including AC8. We conclude that palmitoylation plays a key role in the targeting and action of AKAP79. This novel property of AKAP79 adds an unexpected regulatory and targeting option for AKAPs, which may be exploited in the cellular context.  相似文献   

2.
Increased levels of intracellular cAMP inhibit T cell activation and proliferation. One mechanism is via activation of the cAMP-dependent protein kinase (PKA). PKA is a broad specificity serine/threonine kinase whose fidelity in signaling is maintained through interactions with A kinase anchoring proteins (AKAPs). AKAPs are adaptor/scaffolding molecules that convey spatial and temporal localization to PKA and other signaling molecules. To determine whether T lymphocytes contain AKAPs that could influence the inflammatory response, PBMCs and Jurkat cells were analyzed for the presence of AKAPs. RII overlay and cAMP pull down assays detected at least six AKAPs. Western blot analyses identified four known AKAPs: AKAP79, AKAP95, AKAP149, and WAVE. Screening of a PMA-stimulated Jurkat cell library identified two additional known AKAPs, AKAP220 and AKAP-KL, and one novel AKAP, myeloid translocation gene 16 (MTG16b). Mutational analysis identified the RII binding domain in MTG16b as residues 399-420, and coimmunoprecipitation assays provide strong evidence that MTG16b is an AKAP in vivo. Immunofluorescence and confocal microscopy illustrate distinct subcellular locations of AKAP79, AKAP95, and AKAP149 and suggest colocalization of MTG and RII in the Golgi. These experiments represent the first report of AKAPs in T cells and suggest that MTG16b is a novel AKAP that targets PKA to the Golgi of T lymphocytes.  相似文献   

3.
The cAMP-dependent protein kinase (PKA) is targeted to specific subcellular compartments through its interaction with A-kinase anchoring proteins (AKAPs). AKAPs contain an amphipathic helix domain that binds to the type II regulatory subunit of PKA (RII). Synthetic peptides containing this amphipathic helix domain bind to RII with high affinity and competitively inhibit the binding of PKA with AKAPs. Addition of these anchoring inhibitor peptides to spermatozoa inhibits motility (Vijayaraghavan, S., Goueli, S. A., Davey, M. P., and Carr, D. W. (1997) J. Biol. Chem. 272, 4747-4752). However, inhibition of the PKA catalytic activity does not mimic these peptides, suggesting that the peptides are disrupting the interaction of AKAP(s) with proteins other than PKA. Using the yeast two-hybrid system, we have now identified two sperm-specific human proteins that interact with the amphipathic helix region of AKAP110. These proteins, ropporin (a protein previously shown to interact with the Rho signaling pathway) and AKAP-associated sperm protein, are 39% identical to each other and share a strong sequence similarity with the conserved domain on the N terminus of RII that is involved in dimerization and AKAP binding. Mutation of conserved residues in ropporin or RII prevents binding to AKAP110. These data suggest that sperm contains several proteins that bind to AKAPs in a manner similar to RII and imply that AKAPs may have additional and perhaps unique functions in spermatozoa.  相似文献   

4.
Adrenergic stimulation of the heart initiates a signaling cascade in cardiac myocytes that increases the concentration of cAMP. Although cAMP elevation may occur over a large area of a target-organ cell, its effects are often more restricted due to local concentration of its main effector, protein kinase A (PKA), through A-kinase anchoring proteins (AKAPs). The HERG potassium channel, which produces the cardiac rapidly activating delayed rectifying K(+) current (I (Kr)), is a target for cAMP/PKA regulation. PKA regulation of the current may play a role in the pathogenesis of hereditary and acquired abnormalities of the channel leading to cardiac arrhythmia. We examined the possible role for AKAP-mediated regulation of HERG channels. Here, we report that the PKA-RII-specific AKAP inhibitory peptide AKAP-IS perturbs the distribution of PKA-RII and diminishes the PKA-dependent phosphorylation of HERG protein. The functional consequence of AKAP-IS is a reversal of cAMP-dependent regulation of HERG channel activity. In further support of AKAP-mediated targeting of kinase to HERG, PKA activity was coprecipitated from HERG expressed in HEK cells. Velocity gradient centrifugation of solubilized porcine cardiac membrane proteins showed that several PKA-RI and PKA-RII binding proteins cosediment with ERG channels. A physical association of HERG with several specific AKAPs with known cardiac expression, however, was not demonstrable in heterologous cotransfection studies. These results suggest that one or more AKAP(s) targets PKA to HERG channels and may contribute to the acute regulation of I (Kr) by cAMP.  相似文献   

5.
The cAMP protein kinase A (PKA) pathway in T cells conveys an inhibitory signal to suppress inflammation. This study was performed to understand the mechanisms involved in cAMP-mediated signaling in T lymphocytes. A-kinase anchoring proteins (AKAPs) bind and target PKA to various subcellular locations. AKAPs also bind other signaling molecules such as cyclic nucleotide phosphodiesterases (PDEs) that hydrolyze cAMP in the cell. PDE4 and PDE7 have important roles in T cell activation. Based on this information, we hypothesized that AKAPs associate with PDEs in T lymphocytes. Immunoprecipitation of Jurkat cell lysates with Abs against both the regulatory subunit of PKA (RIIalpha) and specific AKAPs resulted in increased PDE activity associated with RIIalpha and AKAP95, AKAP149, and myeloid translocation gene (MTG) compared with control (IgG). Immunoprecipitation and pull-down analyses demonstrate that PDE4A binds to AKAP149, AKAP95, and MTG, but not AKAP79, whereas PDE7A was found to bind only MTG. Further analysis of MTG/PDE association illustrated that PDE4A and PDE7A bind residues 1-344 of MTG16b. Confocal analysis of HuT 78 cells stained with anti-PDE7A showed overlapping staining patterns with the Golgi marker GM130, suggesting that PDE7A is located in the Golgi. The staining pattern of PDE7A also showed similarity to the staining pattern of MTG, supporting the immunoprecipitation data and suggesting that MTG may interact with PDE7A in the Golgi. In summary, these data suggest that AKAPs interact with both PKA and PDE in T lymphocytes and thus are a key component of the signaling complex regulating T cell activation.  相似文献   

6.
Oncostatin M and cAMP signaling stimulate apical surface-directed membrane trafficking and apical lumen development in hepatocytes, both in a protein kinase A (PKA)-dependent manner. Here, we show that oncostatin M, but not cAMP, promotes the A-kinase anchoring protein (AKAP)-dependent anchoring of the PKA regulatory subunit (R)IIalpha to subapical centrosomes and that this requires extracellular signal-regulated kinase 2 activation. Stable expression of the RII-displacing peptide AKAP-IS, but not a scrambled peptide, inhibits the association of RIIalpha with centrosomal AKAPs and results in the repositioning of the centrosome from a subapical to a perinuclear location. Concomitantly, common endosomes, but not apical recycling endosomes, are repositioned from a subapical to a perinuclear location, without significant effects on constitutive or oncostatin M-stimulated basolateral-to-apical transcytosis. Importantly, however, the expression of the AKAP-IS peptide completely blocks oncostatin M-, but not cAMP-stimulated apical lumen development. Together, the data suggest that centrosomal anchoring of RIIalpha and the interrelated subapical positioning of these centrosomes is required for oncostatin M-, but not cAMP-mediated, bile canalicular lumen development in a manner that is uncoupled from oncostatin M-stimulated apical lumen-directed membrane trafficking. The results also imply that multiple PKA-mediated signaling pathways control apical lumen development and that subapical centrosome positioning is important in some of these pathways.  相似文献   

7.
Localization of cyclic AMP (cAMP)-dependent protein kinase (PKA) by A kinase-anchoring proteins (AKAPs) restricts the action of this broad specificity kinase. The high-resolution crystal structures of the docking and dimerization (D/D) domain of the RIIalpha regulatory subunit of PKA both in the apo state and in complex with the high-affinity anchoring peptide AKAP-IS explain the molecular basis for AKAP-regulatory subunit recognition. AKAP-IS folds into an amphipathic alpha helix that engages an essentially preformed shallow groove on the surface of the RII dimer D/D domains. Conserved AKAP aliphatic residues dominate interactions to RII at the predominantly hydrophobic interface, whereas polar residues are important in conferring R subunit isoform specificity. Using a peptide screening approach, we have developed SuperAKAP-IS, a peptide that is 10,000-fold more selective for the RII isoform relative to RI and can be used to assess the impact of PKA isoform-selective anchoring on cAMP-responsive events inside cells.  相似文献   

8.
Dynamic anchoring of PKA is essential during oocyte maturation   总被引:3,自引:0,他引:3  
In the final stages of ovarian follicular development, the mouse oocyte remains arrested in the first meiotic prophase, and cAMP-stimulated PKA plays an essential role in this arrest. After the LH surge, a decrease in cAMP and PKA activity in the oocyte initiates an irreversible maturation process that culminates in a second arrest at metaphase II prior to fertilization. A-kinase anchoring proteins (AKAPs) mediate the intracellular localization of PKA and control the specificity and kinetics of substrate phosphorylation. Several AKAPs have been identified in oocytes including one at 140 kDa that we now identify as a product of the Akap1 gene. We show that PKA interaction with AKAPs is essential for two sequential steps in the maturation process: the initial maintenance of meiotic arrest and the subsequent irreversible progression to the polar body extruded stage. A peptide inhibitor (HT31) that disrupts AKAP/PKA interactions stimulates oocyte maturation in the continued presence of high cAMP. However, during the early minutes of maturation, type II PKA moves from cytoplasmic sites to the mitochondria, where it associates with AKAP1, and this is shown to be essential for maturation to continue irreversibly.  相似文献   

9.
A型激酶锚定蛋白(A-kinase anchoring proteins,AKAPs)是一类结构不同而功能相关的蛋白家族,其主要功能是将cAMP依赖性蛋白激酶A(PKA)锚定于特定的亚细胞结构.PKA是第二信使cAMP的主要效应器,而AKAPs在靶向定位和调节PKA介导的磷酸化事件方面扮演重要角色. AKAPs更为重要的功能是与多种信号分子形成信号复合物,从时间和空间上整合cAMP-PKA和其他信号途径.本文将对AKAPs及其信号复合物的结构特点和参与细胞信号转导的功能机制及其研究现状进行概述.  相似文献   

10.
11.
Agents that increase intracellular cAMP are potent stimulators of sperm motility. Anchoring inhibitor peptides, designed to disrupt the interaction of the cAMP-dependent protein kinase A (PKA) with A kinase-anchoring proteins (AKAPs), are potent inhibitors of sperm motility. These data suggest that PKA anchoring is a key biochemical mechanism controlling motility. We now report the isolation, identification, cloning, and characterization of AKAP110, the predominant AKAP detected in sperm lysates. AKAP110 cDNA was isolated and sequenced from mouse, bovine, and human testis libraries. Using truncated mutants, the RII-binding domain was identified. Alignment of the RII-binding domain on AKAP110 to those from other AKAPs reveals that AKAPs contain eight functionally conserved positions within an amphipathic helix structure that are responsible for RII interaction. Northern analysis of eight different tissues detected AKAP110 only in the testis, and in situ hybridization analysis detected AKAP110 only in round spermatids, suggesting that AKAP110 is a protein found only in male germ cells. Sperm cells contain both RI, located primarily in the acrosomal region of the head, and RII, located exclusively in the tail, regulatory subunits of PKA. Immunocytochemical analysis detected AKAP110 in the acrosomal region of the sperm head and along the entire length of the principal piece. These data suggest that AKAP110 shares compartments with both RI and RII isoforms of PKA and may function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction.  相似文献   

12.
Control of specificity in cAMP signaling is achieved by A-kinase anchoring proteins (AKAPs), which assemble cAMP effectors such as protein kinase A (PKA) into multiprotein signaling complexes in the cell. AKAPs tether the PKA holoenzymes at subcellular locations to favor the phosphorylation of selected substrates. PKA anchoring is mediated by an amphipathic helix of 14-18 residues on each AKAP that binds to the R subunit dimer of the PKA holoenzymes. Using a combination of bioinformatics and peptide array screening, we have developed a high affinity-binding peptide called RIAD (RI anchoring disruptor) with >1000-fold selectivity for type I PKA over type II PKA. Cell-soluble RIAD selectively uncouples cAMP-mediated inhibition of T cell function and inhibits progesterone synthesis at the mitochondria in steroid-producing cells. This study suggests that these processes are controlled by the type I PKA holoenzyme and that RIAD can be used as a tool to define anchored type I PKA signaling events.  相似文献   

13.
Ejaculated spermatozoa must undergo a series of biochemical modifications called capacitation, prior to fertilization. Protein-kinase A (PKA) mediates sperm capacitation, although its regulation is not fully understood. Sperm contain several A-kinase anchoring proteins (AKAPs), which are scaffold proteins that anchor PKA. In this study, we show that AKAP3 is degraded in bovine sperm incubated under capacitation conditions. The degradation rate is variable in sperm from different bulls and is correlated with the capacitation ability. The degradation of AKAP3 was significantly inhibited by MG-132, a proteasome inhibitor, indicating that AKAP3 degradation occurs via the proteasomal machinery. Treatment with Ca2+-ionophore induced further degradation of AKAP3; however, this effect was found to be enhanced in the absence of Ca2+ in the medium or when intracellular Ca2+ was chelated the degradation rate of AKAP3 was significantly enhanced when intracellular space was alkalized using NH4Cl, or when sperm were treated with Ht31, a peptide that contains the PKA-binding domain of AKAPs. Moreover, inhibition of PKA activity by H89, or its activation using 8Br-cAMP, increased AKAP3 degradation rate. This apparent contradiction could be explained by assuming that binding of PKA to AKAP3 protects AKAP3 from degradation. We conclude that AKAP3 degradation is regulated by intracellular alkalization and PKARII anchoring during sperm capacitation.  相似文献   

14.
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.  相似文献   

15.
Downstream regulation of the cAMP-dependent protein kinase (PKA) pathway is mediated by anchoring proteins (AKAPs) that sequester PKA to specific subcellular locations through binding to PKA regulatory subunits (RI or RII). The RII-binding domain of all AKAPs forms an amphipathic alpha-helix with similar secondary structure. However, the importance of sequence differences in the RII-binding domains of different AKAPs is unknown, and mechanisms that regulate AKAP-PKA affinity are not clearly defined. Using surface plasmon resonance (SPR) spectroscopy, we measured real-time kinetics of RII interaction with various AKAPs. Base-line equilibrium binding constants (K(d)) for RII binding to Ht31, mAKAP, and AKAP15/18 were 10 nm, 119 nm, and 6.6 microm, respectively. PKA stimulation of intact Chinese hamster ovary cells increased RIIalpha binding to AKAP100/mAKAP and AKAP15/18 by approximately 7- and 82-fold, respectively. These results suggest that differences in primary sequence of the RII-binding domain may be responsible for the selective affinity of RII for different AKAPs. Furthermore, RII autophosphorylation may provide additional localized regulation of kinase anchoring. In cardiac myocytes, disruption of RII-AKAP interaction decreased PKA phosphorylation of the PKA substrate, myosin-binding protein C. Thus, these mechanisms may be involved in adding additional specificity in intracellular signaling in diverse cell types and under conditions of cAMP/PKA activation.  相似文献   

16.
Spatiotemporal organization of cAMP signaling begins with the tight control of second messenger synthesis. In response to agonist stimulation of G protein-coupled receptors, membrane-associated adenylyl cyclases (ACs) generate cAMP that diffuses throughout the cell. The availability of cAMP activates various intracellular effectors, including protein kinase A (PKA). Specificity in PKA action is achieved by the localization of the enzyme near its substrates through association with A-kinase anchoring proteins (AKAPs). Here, we provide evidence for interactions between AKAP79/150 and ACV and ACVI. PKA anchoring facilitates the preferential phosphorylation of AC to inhibit cAMP synthesis. Real-time cellular imaging experiments show that PKA anchoring with the cAMP synthesis machinery ensures rapid termination of cAMP signaling upon activation of the kinase. This protein configuration permits the formation of a negative feedback loop that temporally regulates cAMP production.  相似文献   

17.
18.
Accurate calcium signaling requires spatial and temporal coordination of voltage-gated calcium channels (VGCCs) and a variety of signal transduction proteins. Accordingly, regulation of L-type VGCCs involves the assembly of complexes that include the channel subunits, protein kinase A (PKA), protein kinase A anchoring proteins (AKAPs), and beta2-adrenergic receptors, although the molecular details underlying these interactions remain enigmatic. We show here, by combining extracellular epitope splicing into the channel pore-forming subunit and immunoassays with whole cell and single channel electrophysiological recordings, that AKAP79 directly regulates cell surface expression of L-type calcium channels independently of PKA. This regulation involves a short polyproline sequence contained specifically within the II-III cytoplasmic loop of the channel. Thus we propose a novel mechanism whereby AKAP79 and L-type VGCCs function as components of a biosynthetic mechanism that favors membrane incorporation of organized molecular complexes in a manner that is independent of PKA phosphorylation events.  相似文献   

19.
The cAMP-dependent protein kinase (PKA) is localized to specific subcellular compartments by association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of functionally related proteins that bind the regulatory (R) subunit of PKA with high affinity and target the kinase to specific subcellular organelles. Recently, AKAP18, a low molecular weight plasma membrane AKAP that facilitates PKA-mediated phosphorylation of the L-type Ca(2+) channel, was cloned. We now report the cloning of two additional isoforms of AKAP18, which we have designated AKAP18beta and AKAP18gamma, that arise from alternative mRNA splicing. The AKAP18 isoforms share a common R subunit binding site, but have distinct targeting domains. The original AKAP18 (renamed AKAP18alpha) and AKAP18beta target the plasma membrane when expressed in HEK-293 cells, while AKAP18gamma is cytosolic. When expressed in epithelial cells, AKAP18alpha is targeted to lateral membranes, whereas AKAP18beta is accumulated at the apical membrane. A 23-amino acid insert, following the plasma membrane targeting domain, facilitates the association of AKAP18beta with the apical membrane. The data suggest that AKAP18 isoforms are differentially targeted to modulate distinct intracellular signaling events. Furthermore, the data suggest that plasma membrane AKAPs may be targeted to subdomains of the cell surface, adding additional specificity in intracellular signaling.  相似文献   

20.
In the mammalian oocyte, the cAMP-dependent protein kinase (PKA) has critical functions in the maintenance of meiotic arrest and oocyte maturation. Because PKA is spatially regulated, its localization was examined in developing oocytes. Both regulatory subunits (RI and RII) and the catalytic subunit (C) of PKA were found in oocytes and metaphase II-arrested eggs. In the oocyte, RI and C were predominantly localized in the cortical region, while RII showed a punctate distribution within the cytoplasm. After maturation to metaphase II, RI remained in the cortex and was also localized to the meiotic spindle, while RII was found adjacent to the spindle. C was diffuse within the cytoplasm of the egg but was enriched in the cytoplasm surrounding the metaphase spindle, much like RII. The polarized localization and redistribution of RI, RII, and C suggested that PKA might be tethered by A-kinase anchor proteins (AKAPs), proteins that tether PKA close to its physiological substrates. An AKAP, AKAP140, was identified that was developmentally regulated and phosphorylated in oocytes and eggs. AKAP140 was shown to be a dual-specific AKAP, having the ability to bind both RI and RII. By compartmentalizing PKA, AKAP140 and/or other AKAPs could spatially regulate PKA activity during oocyte development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号