首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introgression of transgenes into wild relatives or weeds through pollen-mediated gene flow is a major concern in environmental risk assessment of transgenic crops. A large-scale (1.3–1.8 ha) rice gene flow study was conducted using transgenic rice containing the bar gene as a pollen donor and Oryza rufipogon as a recipient. There was a high frequency of transgene flow (11%−18%) at 0–1 m, with a steep decline with increasing distance to a detection limit of 0.01% by 250 m. To our knowledge, this is the highest frequency and longest distance of gene flow from transgenic rice to O. rufipogon reported so far. On the basis of these data, an adequate isolation distance from both conventional and transgenic rice should be taken for in situ conservation of common wild rice. Meanwhile, there is no evidence of transgene introgression into barnyard grass, even when it has coexisted with transgenic rice containing the bar gene for five successive years. Thus, the environmental risk of gene flow to this weedy species is of little concern.  相似文献   

2.
Pollen flow of cultivated rice measured under experimental conditions   总被引:15,自引:0,他引:15  
The pollen flow pattern of a cultivated rice variety, Minghui-63, was studied at horizontal and vertical levels under experimental conditions. Data obtained from pollen traps for six designed populations (as pollen sources) at different intervals showed that the dispersal of rice pollen decreased with the increase of distance from pollen sources and that the rice pollen flow was significantly influenced by weather conditions, particularly by wind direction and speed. For a mean wind speed of 2.52 m/s in a downwind direction, the observed distance of rice pollen dispersal was 38.4 m, indicating that rice pollen grains normally disperse at a relatively small range. However, the maximum distance of rice pollen flow could be up to 110 m, using regression analysis of pollen flow and wind speed, when the wind speed reached 10 m/s in this study. The frequency of pollen flow was positively correlated with pollen source size within a given range, suggesting that pollen flow will occur effectively at a considerable rate in rice fields with sufficiently large pollen sources. In addition, many more pollen grains were detected at the height of 1.0–1.5 m than at 2.0 m, indicating that rice pollen mainly disperses at relatively low heights. Results from this study are useful both for minimizing transgene escape from transgenic rice and in situ conservation of wild relatives of rice, as well as for hybrid seed production, where an effective isolation buffer zone needs to be established.  相似文献   

3.
Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives   总被引:18,自引:0,他引:18  
BACKGROUND AND AIMS: Transgene escape through gene flow from genetically modified (GM) crops to their wild relative species may potentially cause environmental biosafety problems. The aim of this study was to assess the extent of gene flow between cultivated rice and two of its close relatives under field conditions. METHODS: Experiments were conducted at two sites in Korea and China to determine gene flow from cultivated rice (Oryza sativa L.) to weedy rice (O. sativa f. spontanea) and common wild rice (O. rufipogon Griff.), respectively, under special field conditions mimicking the natural occurrence of the wild relatives in Asia. Herbicide resistance (bar) and SSR molecular finger printing were used as markers to accurately determine gene flow frequencies from cultivated rice varieties to their wild relatives. KEY RESULTS: Gene flow frequency from cultivated rice was detected as between approx. 0.011 and 0.046 % to weedy rice and between approx. 1.21 and 2.19 % to wild rice under the field conditions. CONCLUSIONS: Gene flow occurs with a noticeable frequency from cultivated rice to its weedy and wild relatives, and this might cause potential ecological consequences. It is recommended that isolation zones should be established with sufficient distances between GM rice varieties and wild rice populations to avoid potential outcrosses. Also, GM rice should not be released when it has inserted genes that can significantly enhance the ecological fitness of weedy rice in regions where weedy rice is already abundant and causing great problems.  相似文献   

4.
Fast development and commercialization of genetically modified plants have aroused concerns of transgene escape and its environmental consequences. A model that can effectively predict pollen‐mediated gene flow (PMGF) is essential for assessing and managing risks from transgene escape. A pollen‐trap method was used to measure the wind‐borne pollen dispersal in cultivated rice and common wild rice, and effects of relative humidity, temperature and wind speed on pollen dispersal were estimated. A PMGF model was constructed based on the pollen dispersal pattern in rice, taking outcrossing rates of recipients and cross‐compatibility between rice and its wild relatives into consideration. Published rice gene flow data were used to validate the model. Pollen density decreased in a simple exponential pattern with distances to the rice field. High relative humidity reduced pollen dispersal distances. Model simulation showed an increased PMGF frequency with the increase of pollen source size (the area of a rice field), but this effect levelled off with a large pollen‐source size. Cross‐compatibility is essential when modelling PMGF from rice to its wild relatives. The model fits the data well, including PMGF from rice to its wild relatives. Therefore, it can be used to predict PMGF in rice under diverse conditions (e.g. different outcrossing rates and cross‐compatibilities), facilitating the determination of isolation distances to minimize transgene escape. The PMGF model may be extended to other wind‐pollinated plant species such as wheat and barley.  相似文献   

5.
Transgene flow to hybrid rice and its male-sterile lines   总被引:9,自引:0,他引:9  
Jia S  Wang F  Shi L  Yuan Q  Liu W  Liao Y  Li S  Jin W  Peng H 《Transgenic research》2007,16(4):491-501
Gene flow from genetically modified (GM) crops to the same species or wild relatives is a major concern in risk assessment. Transgenic rice with insect and/or disease resistance, herbicide, salt and/or drought tolerance and improved quality has been successfully developed. However, data on rice gene flow from environmental risk assessment studies are currently insufficient for the large-scale commercialization of GM rice. We have provided data on the gene flow frequency at 17 distances between a GM japonica line containing the bar gene as a pollen donor and two indica hybrid rice varieties and four male-sterile (ms) lines. The GM line was planted in a 640m2 in an isolated experimental plot (2.4 ha), which simulates actual conditions of rice production with pollen competition. Results showed that: (1) under parallel plantation at the 0-m zone, the transgene flow frequency to the ms lines ranged from 3.145 to 36.116% and was significantly higher than that to hybrid rice cultivars (0.037–0.045%). (2) Gene flow frequency decreased as the distance increased, with a sharp cutoff point at about 1–2 m; (3) The maximum distance of transgene flow was 30–40 m to rice cultivars and 40–150 m to ms lines. We believe that these data will be useful for the risk assessment and management of transgenic rice lines, especially in Asia where 90% of world's rice is produced and hybrid rice varieties are extensively used. Shirong Jia, Feng Wang and Lei Shi contributed equally to this investigation.  相似文献   

6.
Pollen-mediated gene flow is the major pathway for transgene escape from GM rice to its wild relatives. Transgene escape to wild Oryza species having AA-genome will occur if GM rice is released to environments with these wild Oryza species. Transgenes may persist to and spread in wild populations after gene flow, resulting unwanted ecological consequences. For assessing the potential consequences caused by transgene escape, it is important to understand the actual gene flow frequencies from GM rice to wild relatives, transgene expression and inheritance in the wild relatives, as well as fitness changes that brought to wild relatives by the transgenes. This article reviews studies on transgene escape from rice to its wild relatives via gene flow and its ecological consequences. A framework for assessing potential ecological consequences caused by transgene escape from GM rice to its wild relatives is discussed based on studies of gene flow and fitness changes.  相似文献   

7.
栽培稻与其野生近缘种的可交配性研究   总被引:4,自引:0,他引:4  
通过人工授粉方法研究栽培稻与二倍体和四倍体野生稻之间的可交配性.以栽培稻为对照,用光学显微镜观察不同野生稻花粉在同一栽培种柱头上的萌发生长情况.结果表明,在栽培稻柱头上普通野生稻(AA)花粉萌发最好,与对照萌发情况相近.药用野生稻(CC)萌发差,表现为柱头上花粉附着量少,开始萌发时间迟,萌发量少,花粉管扭曲、缠绕、伸长慢等.四倍体野生稻未观察到有萌发现象.说明普通野生稻与栽培稻亲缘关系近,可交配性好;药用野生稻与栽培稻可交配性差;四倍体野生稻与栽培稻可交配性极差.由此推断,转基因水稻与普通野生稻通过花粉途径发生基因漂移的可能性很大,而与药用野生稻和其他基因组野生稻发生基因漂移的可能性很小.  相似文献   

8.
Lee S  Jia Y  Jia M  Gealy DR  Olsen KM  Caicedo AL 《PloS one》2011,6(10):e26260
The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus), which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta) found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH), suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s) required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta), not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing.  相似文献   

9.
Gene flow between cultivated and wild sunflowers   总被引:6,自引:0,他引:6  
With the development of transgenic crops, concern has been expressed regarding the possible escape of genetically-engineered genes via hybridization with wild relatives. This is a potential hazard for sunflowers because wild sunflowers occur as weeds in fields where cultivated sunflowers are grown and hybridization between them has been reported. In order to quantify the potential for gene escape, two experimental stands of sunflower cultivars were planted at two sites with different rainfall and altitude profiles. Populations of wild plants were planted at different distances from each cultivar stand. An allele homozygous in the cultivar (6Pgd-3-a), but absent in the wild populations, was used as a molecular marker to document the incidence and rate of gene escape from the cultivar into the wild populations of sunflowers. Three-thousand achenes were surveyed to determine the amount of gene flow from the cultivated to the wild populations. The marginal wild populations (3 m from the cultivar) showed the highest percentage (27%) of gene flow. Gene flow was found to decrease with distance; however, gene flow occurred up to distances of 1000 m from the source population. These data suggest that physical distance alone will be unlikely to prevent gene flow between cultivated and wild populations of sunflowers.  相似文献   

10.
Introgression arising from crop-to-wild gene flow provides novel sources of genetic variation in plant species complexes. Hybridization within the Beta vulgaris species complex is of immediate concern; crop lineages ( B .  vulgaris ssp. vulgaris ) hybridize easily with their wild relatives ( B .  vulgaris ssp. maritima ) thereby threatening wild beet gene diversity with genetic swamping. Hybridization 'hotspots' occur in European seed production areas because inland ruderal wild beets occur and reproduce in sympatry with cultivated beets. We studied gene flow occurring between seed-producing cultivars and ruderal wild B .  vulgaris in southwestern France to determine whether feral beets, arising from unharvested cultivated seed, represent an opportunity for crop-to-wild gene flow. We surveyed 42 inland ruderal beet populations located near seed production fields for nucleo-cytoplasmic variation and used a cytoplasmic marker diagnostic of cultivated lines. Occurrence of cultivated-type cytoplasm within ruderal populations clearly reflected events of crop seed escape. However, we found no genetic signatures of nuclear cultivated gene introgression, which suggests past introgression of cultivated cytoplasm into a wild nuclear background through seed escape rather than recent direct pollen flow. Overall, patterns of genetic structure suggested that inland ruderal wild beet populations act as a metapopulation, with founding events involving a few sib groups, followed by low rates of seed or pollen gene flow after populations are established. Altogether, our results indicate that a long-lived seed bank plays a key role in maintaining cultivated-type cytoplasm in the wild and highlight the need for careful management of seed production areas where wild and cultivated relatives co-occur.  相似文献   

11.
Gene flow from crops to wild related species has been recently under focus in risk-assessment studies of the ecological consequences of growing transgenic crops. However, experimental studies addressing this question are usually temporally or spatially limited. Indirect population-structure approaches can provide more global estimates of gene flow, but their assumptions appear inappropriate in an agricultural context. In an attempt to help the committees providing advice on the release of transgenic crops, we present a new method to estimate the quantity of genes migrating from crops to populations of related wild plants by way of pollen dispersal. This method provides an average estimate at a landscape level. Its originality is based on the measure of the inverse gene flow, i.e. gene flow from the wild plants to the crop. Such gene flow results in an observed level of impurities from wild plants in crop seeds. This level of impurity is usually known by the seed producers and, in any case, its measure is easier than a direct screen of wild populations because crop seeds are abundant and their genetic profile is known. By assuming that wild and cultivated plants have a similar individual pollen dispersal function, we infer the level of pollen-mediated gene flow from a crop to the surrounding wild populations from this observed level of impurity. We present an example for sugar beet data. Results suggest that under conditions of seed production in France (isolation distance of 1,000 m) wild beets produce high numbers of seeds fathered by cultivated plants. Received: 5 February 2001 / Accepted: 26 March 2001  相似文献   

12.
Gene flow from transgenic plants to compatible wild relatives is one of the major impediments to the development of the culture of genetically engineered crop plants. In this work, the flow of EPSPS (conferring resistance to glyphosate) gene of transgene Brassica napus toward the untransgene B. napus and wild relative species Orychophragmus violaceus in an open field (1 ha) was studied. The data related to only the 2004 and 2005 autumn season on one location of southwest of China. Pollen dispersal and fertilization of the target plants were favored and a detailed analysis of the hybrid offspring was performed. In field, the data studied show that the gene flow frequency was 0.16% between GM and non-GM B. napus at a distance of 1 m from the transgenic donor area. The crosspollination frequency was 0.05% between GM and non-GM B. napus at a distance of 5 m from the transgenic donor area. At a distance of 10 m, no crosspollination was observed. According to the results of this study, B. napus transgene flow was low. However, the wild relative species O. violaceus could not be fertilized by the transgenic pollen of B. napus, no matter what the distance was.  相似文献   

13.
Chun YJ  Kim DI  Park KW  Kim HJ  Jeong SC  An JH  Cho KH  Back K  Kim HM  Kim CG 《Planta》2011,233(4):807-815
Gene flow from genetically modified (GM) crops to non-GM cultivars or weedy relatives may lead to the development of more aggressive weeds. We quantified the amount of gene flow from herbicide-tolerant GM rice (Protox GM, derived from the cultivar Dongjin) to three cultivars (Dongjin, Aranghyangchal and Hwaseong) and a weedy rice line. Gene flow frequency generally decreased with increasing distance from the pollen donor. At the shortest distance (0.5 m), we observed a maximum frequency (0.039%) of gene flow. We found that the cultivar Dongjin received the greatest amount of gene flow, with the second being weedy rice. Heterosis of F2 inbred progeny was also examined between Protox GM and weedy rice. We compared growth and reproduction between F2 progeny (homozygous or hemizygous for the Protox gene) and parental rice lines (GM and weedy rice). Here, transgene-homozygous F2 progeny was significantly taller and produced more seeds than the transgene-hemizygous F2 progeny and parental lines. Although the gene flow frequency was generally low, our results suggest that F2 progeny between GM and weedy relatives may exhibit heterosis.  相似文献   

14.
中国是水稻的起源中心之一,分布着丰富的野生种质资源.自转基因水稻获得安全证书以来,转基因水稻与其近缘野生种间的基因流受到广泛关注.本文对转基因水稻基因流的发生及其可能引起的生态学后果进行了综述和展望.认为转基因水稻能够与栽培稻、野生稻、杂草稻、稗草等成功杂交,但基因流发生频率较低且变化较大.基因流成功发生后,由于转基因水稻具转基因新性状而有适合度优势,转基因可能只通过少数几代就进入野生种群.当转基因植株进入野生种群并在自然条件下长期存在时,转基因植株与近缘野生种间的竞争关系和相对适合度将决定混合种群的动态变化.研究转基因水稻基因流的影响及其长期生态学后果对合理保护与利用野生种质资源具有重要意义.  相似文献   

15.
转基因技术研发为提高我国水稻产量和减少劳动力投入提供了巨大机遇。我国对转基因水稻研发进行了大量的投入,目前已培育了具有不同新性状的转基因水稻品系,许多品系已进入生物安全评价阶段。风险评价对转基因水稻的安全生产至关重要,是其商品化生产之前必须解决的问题,其中包括转基因逃逸及其潜在环境影响。对水稻抗虫转基因逃逸及其潜在环境风险的评价包括3个重要环节:(1)通过田间试验和模型模拟检测转基因漂移到非转基因栽培稻及其野生近缘种的频率;(2)检测转基因在栽培稻和野生近缘种后代中的表达;(3)确定转基因对野生近缘种群体适合度和进化潜力的影响。大量研究表明,在近距离的空间范围内栽培稻品种之间的基因漂移频率很低(〉0.1%),但栽培稻与其野生近缘种的基因漂移频率变异很大。进一步研究还表明,Bt抗虫转基因在栽培稻与普通野生稻后代中均能正常表达,但在其不同生长阶段,表达量有很大变异。在有较高水平的害虫虫压下,含有抗虫转基因的栽培稻及野生近缘种杂交后代与不含转基因的对照相比,抗虫性显著提高且适合度利益明显;但是,在虫害发生水平较低时,含有抗虫转基因的群体与不含抗虫转基因的群体相比没有显著的适合度优势。综上,转基因逃逸到非转基因水稻的频率极低,并且可以通过空间隔离阻断其逃逸。虽然抗虫转基因向杂草稻以及与栽培稻距离较近的野生稻群体的逃逸无法避免,但是野生稻和杂草稻群体周围环境中的总体虫压较低,所以基因漂移带来的环境影响应十分有限。  相似文献   

16.
Bacterial blight (BB) is one of the major diseases that affect rice productivity. In previous studies, BB resistance was transferred to cultivated rice Oryza sativa from wild rice Oryza meyeriana using asymmetric somatic hybridization. One of the resistant hybrid progenies (Y73) has also been shown to possess novel resistance gene(s) different from any of those previously associated with BB resistance. We have mapped quantitative trait loci (QTLs) for BB resistance in a recombinant inbred line (RIL) population derived from a cross between Y73 and a BB‐susceptible cv. IR24. Five QTLs were detected where Y73 alleles contributed to increased BB resistance. Three minor QTLs were identified on chromosomes 3, 10 and 11, and two major QTLs on chromosomes 1 and 5, respectively. QTL on chromosome 5, designated qBBR5, had the strongest effect on BB resistance, explaining approximately 37% of the phenotypic variance. Using the same RIL population, we also mapped QTLs for agronomic traits including plant height (PH), heading date (HD), plant yield (PYD) and PYD component traits. A total of 21 QTLs were identified, of which four were detected for PH, six for HD, three for panicle number per plant (PNPP), one for spikelets per panicle (SPP), six for 1000‐grain weight (TGW) and one for PYD. qPH1 (a QTL for PH) was found in the same interval as qBBR1 for BB resistance, and qHD11 for HD and qBBR11 for BB resistance also shared a similar interval. Additionally, BB resistance was significantly correlated with PH or HD in the RIL population. This suggests that the resistance genes may have pleiotropic effects on, or close linkage to, genes controlling PH or HD. These results will help deduce the resistance mechanisms of the novel resistance gene(s) and provide the basis for cloning them and using them in marker‐assisted breeding.  相似文献   

17.
Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops-to-crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level.  相似文献   

18.
Gene flow and introgression from cultivated to wild plant populations have important evolutionary and ecological consequences and require detailed investigations for risk assessments of transgene escape into natural ecosystems. Sugar beets (Beta vulgaris ssp. vulgaris) are of particular concern because: (i) they are cross-compatible with their wild relatives (the sea beet, B. vulgaris ssp. maritima); (ii) crop-to-wild gene flow is likely to occur via weedy lineages resulting from hybridization events and locally infesting fields. Using a chloroplastic marker and a set of nuclear microsatellite loci, the occurrence of crop-to-wild gene flow was investigated in the French sugar beet production area within a 'contact-zone' in between coastal wild populations and sugar beet fields. The results did not reveal large pollen dispersal from weed to wild beets. However, several pieces of evidence clearly show an escape of weedy lineages from fields via seed flow. Since most studies involving the assessment of transgene escape from crops to wild outcrossing relatives generally focused only on pollen dispersal, this last result was unexpected: it points out the key role of a long-lived seed bank and highlights support for transgene escape via man-mediated long-distance dispersal events.  相似文献   

19.
水稻白叶枯病新抗源Y238的鉴定及其近等基因系培育   总被引:10,自引:0,他引:10  
从269份普通野生稻中鉴定出一个高抗白叶枯病的新抗源,编号为Y238.通过多茵系鉴定、抗谱分析及与目前国际上已知基因比较,证明该新抗源含有一个新基因,暂命名为WBB2.对JG30/Y238杂交后代成株期接种鉴定、遗传分析表明,WBB2为完全显性基因.通过杂交和回交,已将WBB2导入栽培稻中构建近等基因系.  相似文献   

20.
水稻白叶枯病是水稻生产上的主要细菌病害之一。从野生稻中发掘优异的水稻白叶枯病抗性材料,可以拓宽栽培稻抗白叶枯病遗传基础。经过温室接菌鉴定和PCR标记分析,对云南野生稻进行Xa21基因的检测鉴定。温室接菌鉴定表明,云南野生稻对广谱致病小种PX099及云南强致病菌Y8具有较好的抗性能力,特别是疣粒野生稻对致病菌株达到免疫程度;PCR标记分析表明,云南野生稻不含有Xa21基因,但含有与Xa21基因某些区域同源的片段。本研究结果为寻找新的抗源材料及快速发掘利用云南野生稻中的抗白叶枯病基因提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号