首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以水稻杂交品种‘云资粳41号’为受体材料,通过农杆菌介导法将苦参凝集素蛋白基因(SFL)导入水稻细胞,采用氯酚红法和PCR检测外源基因是否整合到水稻基因组中。结果显示:外源基因成功转入水稻基因组,并获得一批转基因水稻植株;转基因植株叶片离体接种稻瘟病菌的检测结果显示,转基因植株与对照(非转基因植株)相比有明显的抗性,证明SFL基因在水稻中得到表达。研究表明,基于SFL基因所具备的广谱抗菌作用,可以预期所得转基因水稻植株很可能对水稻的多种病原菌具有良好的抗性,为选育新的抗稻瘟病水稻新品种以及拓宽栽培稻抗病遗传基础增加抗稻瘟病基因奠定了基础。  相似文献   

2.
The elongation factor Tu (EF-Tu) receptor (EFR) in cruciferous plants specifical y recognizes the N-terminal acetylated elf18 region of bacterial EF-Tu and thereby activates plant immunity. It has been...  相似文献   

3.
Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.  相似文献   

4.
A rice (Oryza sativa) Rac/Rop GTPase, Os Rac1, is involved in innate immunity, but its molecular function is largely unknown. RAR1 (for required for Mla12 resistance) and HSP90 (a heat shock protein 90 kD) are important components of R gene-mediated disease resistance, and their function is conserved in several plant species. HSP90 has also recently been shown to be important in mammalian innate immunity. However, their functions at the molecular level are not well understood. In this study, we examined the functional relationships between Os Rac1, RAR1, and HSP90. Os RAR1-RNA interference (RNAi) rice plants had impaired basal resistance to a compatible race of the blast fungus Magnaporthe grisea and the virulent bacterial blight pathogen Xanthomonas oryzae. Constitutively active Os Rac1 complemented the loss of resistance, suggesting that Os Rac1 and RAR1 are functionally linked. Coimmunoprecipitation experiments with rice cell culture extracts indicate that Rac1 forms a complex with RAR1, HSP90, and HSP70 in vivo. Studies with Os RAR1-RNAi and treatment with geldanamycin, an HSP90-specific inhibitor, showed that RAR1 and HSP90 are essential for the Rac1-mediated enhancement of pathogen-associated molecular pattern-triggered immune responses in rice cell cultures. Furthermore, the function of HSP90, but not RAR1, may be essential for their association with the Rac1 complex. Os Rac1 also regulates RAR1 expression at both the mRNA and protein levels. Together, our results indicate that Rac1, RAR1, HSP90, and HSP70 form one or more protein complexes in rice cells and suggest that these proteins play important roles in innate immunity in rice.  相似文献   

5.
Transgenic rice ( Oryza sativa cv. Sasanishiki) overexpressing the wasabi defensin gene, a plant defensin effective against the rice blast fungus, was generated by Agrobacterium tumefaciens-mediated transformation. Twenty-two T2 homozygous lines harboring the wasabi defensin gene were challenged by the blast fungus. Transformants exhibited resistance to rice blast at various levels. The inheritance of the resistance over generations was investigated. T3 plants derived from two highly blast-resistant T2 lines (WT14-5 and WT43-5) were challenged with the blast fungus using the press-injured spots method. The average size of disease lesions of the transgenic line WT43-5 was reduced to about half of that of non-transgenic plants. The 5-kDa peptide, corresponding to the processed form of the wasabi defensin, was detected in the total protein fraction extracted from the T3 progeny. Transgenic rice plants overproducing wasabi defensin are expected to possess a durable and wide-spectrum resistance (i.e. field resistance) against various rice blast races.  相似文献   

6.
The AGC kinase OsOxi1, which has been isolated as an interactor with OsPti1a, positively regulates basal disease resistance in rice. In eukaryotes, AGC kinase family proteins are regulated by 3-phosphoinositide-dependent protein kinase 1 (Pdk1). In Arabidopsis, AtPdk1 directly interacts with phosphatidic acid, which functions as a second messenger in both biotic and abiotic stress responses. However, the functions of Pdk1 are poorly understood in plants. We show here that OsPdk1 acts upstream of the OsOxi1-OsPti1a signal cascade in disease resistance in rice. OsPdk1 interacts with OsOxi1 and phosphorylates the Ser283 residue of OsOxi1 in vitro. To investigate whether OsPdk1 is involved in immunity that is triggered by microbial-associated molecular patterns, we analyzed the phosphorylation status of OsPdk1 in response to chitin elicitor. Like OsOxi1, OsPdk1 is rapidly phosphorylated in response to chitin elicitor, suggesting that OsPdk1 participates in signal transduction through pathogen recognition. The overexpression of OsPdk1 enhanced basal resistance against a blast fungus, Magnaporthe oryzae, and a bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Taken together, these results suggest that OsPdk1 positively regulates basal disease resistance through the OsOxi1-OsPti1a phosphorylation cascade in rice.  相似文献   

7.
8.
9.
Broad-Spectrum Resistance 1 (BSR1) encodes a rice receptor-like cytoplasmic kinase, and enhances disease resistance when overexpressed. Rice plants overexpressing BSR1 are highly resistant to diverse pathogens, including rice blast fungus. However, the mechanism responsible for this resistance has not been fully characterized. To analyze the BSR1 function, BSR1-knockout (BSR1-KO) plants were generated using a clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Experiments using suspension-cultured cells revealed that defense responses including H2O2 production (i.e. oxidative burst) and expression of defense-related genes induced by autoclaved conidia of the rice blast fungus significantly decreased in BSR1-KO cells. Furthermore, a treatment with chitin oligomers which function as microbe-associated molecular patterns (MAMPs) of the rice blast fungus resulted in considerably suppressed defense responses in BSR1-KO cells. These results suggest that BSR1 is important for the rice innate immunity triggered by the perception of chitin.  相似文献   

10.
Liu H  Wang X  Zhang H  Yang Y  Ge X  Song F 《Gene》2008,420(1):57-65
Serine carboxypeptidase-like proteins (SCPLs) comprise a large family of protein hydrolyzing enzymes that play roles in multiple cellular processes. During the course of study aimed at elucidating the molecular basis of induced immunity in rice, a gene, OsBISCPL1, encoding a putative SCPL, was isolated and identified. OsBISCPL1 contains a conserved peptidase S10 domain, serine active site and a signal peptide at N-terminus. OsBISCPL1 is expressed ubiquitously in rice, including roots, stems, leaves and spikes. Expression of OsBISCPL1 in leaves was significantly up-regulated after treatments with benzothiadiazole, salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid, and also up-regulated in incompatible interactions between rice and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants with constitutive expression of OsBISCPL1 were generated and disease resistance assays indicated that the OsBISCPL1-overexpressing plants showed an enhanced disease resistance against Pseudomonas syringae pv. tomato and Alternaria brassicicola. Expression levels of defense-related genes, e.g. PR1, PR2, PR5 and PDF1.2, were constitutively up-regulated in transgenic plants as compared with those in wild-type plants. Furthermore, the OsBISCPL1-overexpressing plants also showed an increased tolerance to oxidative stress and up-regulated expression of oxidative stress-related genes. The results suggest that the OsBISCPL1 may be involved in regulation of defense responses against pathogen infection and oxidative stress.  相似文献   

11.
Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.  相似文献   

12.
Plant 14-3-3 proteins regulate important cellular processes, including plant immune responses, through protein-protein interactions with a wide range of target proteins. In rice (Oryza sativa), the GF14e gene, which encodes a 14-3-3 protein, is induced during effector-triggered immunity (ETI) associated with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo). To determine whether the GF14e gene plays a direct role in resistance to disease in rice, we suppressed its expression by RNAi silencing. GF14e suppression was correlated with the appearance of a lesion-mimic (LM) phenotype in the transgenic plants at 3 weeks after sowing. This indicates inappropriate regulation of cell death, a phenotype that is frequently associated with enhanced resistance to pathogens. GF14e-silenced rice plants showed high levels of resistance to a virulent strain of Xoo compared with plants that were not silenced. Enhanced resistance was correlated with GF14e silencing prior to and after development of the LM phenotype, higher basal expression of a defense response peroxidase gene (POX22.3), and accumulation of reactive oxygen species (ROS). In addition, GF14e-silenced plants also exhibit enhanced resistance to the necrotrophic fungal pathogen Rhizoctonia solani. Together, our findings suggest that GF14e negatively affects the induction of plant defense response genes, cell death and broad-spectrum resistance in rice.  相似文献   

13.
Engineering durable nonspecific resistance to phytopathogens is one of the ultimate goals of plant breeding. However, most attempts to reach this goal fail as a result of rapid changes in pathogen populations and the sheer diversity of pathogen infection mechanisms. In this study, we show that the expression of a harpin-encoding gene ( hrf1 ), derived from Xanthomonas oryzae pv. oryzae, confers nonspecific resistance in rice to the blast fungus Magnaporthe grisea . Transgenic plants and their T1–T7 progenies were highly resistant to all major M. grisea races in rice-growing areas along the Yangtze River, China. The expression of defence-related genes was activated in resistant transgenic plants, and the formation of melanized appressoria, which is essential for foliar infection, was inhibited on plant leaves. These results suggest that harpins may offer new opportunities for generating broad-spectrum disease resistance in other crops.  相似文献   

14.
Expression of pathogenesis-related (PR) genes is part of the plant's natural defense response against pathogen attack. The PRms gene encodes a fungal-inducible PR protein from maize. Here, we demonstrate that expression of PRms in transgenic rice confers broad-spectrum protection against pathogens, including fungal (Magnaporthe oryzae, Fusarium verticillioides, and Helminthosporium oryzae) and bacterial (Erwinia chrysanthemi) pathogens. The PRms-mediated disease resistance in rice plants is associated with an enhanced capacity to express and activate the natural plant defense mechanisms. Thus, PRms rice plants display a basal level of expression of endogenous defense genes in the absence of the pathogen. PRms plants also exhibit stronger and quicker defense responses during pathogen infection. We also have found that sucrose accumulates at higher levels in leaves of PRms plants. Sucrose responsiveness of rice defense genes correlates with the pathogen-responsive priming of their expression in PRms rice plants. Moreover, pretreatment of rice plants with sucrose enhances resistance to M. oryzae infection. Together, these results support a sucrose-mediated priming of defense responses in PRms rice plants which results in broad-spectrum disease resistance.  相似文献   

15.
Rice (Oryza sativa) plants carrying the Pi-i resistance gene to blast fungus Magnaporthe oryzae restrict invaded fungus in infected tissue via hypersensitive reaction or response (HR), which is accompanied by rapid ethylene production and formation of small HR lesions. Ethylene biosynthesis has been implicated to be important for blast resistance; however, the individual roles of ethylene and cyanide, which are produced from the precursor 1-aminocyclopropane-1-carboxylic acid, remain unevaluated. In this study, we found that Pi-i-mediated resistance was compromised in transgenic rice lines, in which ethylene biosynthetic enzyme genes were silenced and then ethylene production was inhibited. The compromised resistance in transgenic lines was recovered by exogenously applying cyanide but not ethephon, an ethylene-releasing chemical in plant tissue. In a susceptible rice cultivar, treatment with cyanide or 1-aminocyclopropane-1-carboxylic acid induced the resistance to blast fungus in a dose-dependent manner, while ethephon did not have the effect. Cyanide inhibited the growth of blast fungus in vitro and in planta, and application of flavonoids, secondary metabolites that exist ubiquitously in the plant kingdom, enhanced the cyanide-induced inhibition of fungal growth. These results suggested that cyanide, whose production is triggered by HR in infected tissue, contributes to the resistance in rice plants via restriction of fungal growth.  相似文献   

16.
We isolated and characterized a histidine kinase gene (HIK1) from the rice blast fungus, Pyricularia oryzae (Magnaporthe grisea). The deduced amino acid sequence of HIK1 showed highest similarity (85.7%) to a hybrid-type histidine kinase, Os-1/Nik-1 of Neurospora crassa. Disruption of HIK1 caused no defect in cell growth on normal media and in pathogenicity to rice plants. The Deltahik1 strain acquired resistance to three groups of fungicides (phenylpyrroles, dicarboximides, and aromatic hydrocarbons) similar to os-1 mutants of N. crassa. The Deltahik1 strain showed increased sensitivity to high concentrations of sugars although its salt sensitivity was not elevated, suggesting that the rice blast fungus can distinguish osmostresses caused by high sugar concentrations and high salt concentrations. In contrast, os-1 mutants of N. crassa are sensitive to high concentrations of both salts and sugars. These findings suggest that P. oryzae and N. crassa partially differ in their os (osmosensitive) signal transduction pathway.  相似文献   

17.
18.
Nucleotide binding domain and leucine-rich repeat (NLR)-containing family proteins function as intracellular immune sensors in both plants and animals. In plants, the downstream components activated by NLR family proteins and the immune response mechanisms induced by these downstream molecules are largely unknown. We have previously found that the small GTPase OsRac1, which acts as a molecular switch in rice immunity, is activated by Pit, an NLR-type resistance (R) protein to rice blast fungus, and this activation plays critical roles in Pit-mediated immunity. However, the sites and mechanisms of activation of Pit in vivo remain unknown. To clarify the mechanisms involved in the localization of Pit, we searched for consensus sequences in Pit that specify membrane localization and found a pair of potential palmitoylation sites in the N-terminal coiled-coil region. Although wild-type Pit was localized mainly to the plasma membrane, this membrane localization was compromised in a palmitoylation-deficient mutant of Pit. The palmitoylation-deficient Pit displayed significantly lower affinity for OsRac1 on the plasma membrane, thereby resulting in failures of the Pit-mediated cell death, the production of reactive oxygen species, and disease resistance to rice blast fungus. These results indicate that palmitoylation-dependent membrane localization of Pit is required for the interaction with and the activation of OsRac1 and that OsRac1 activation by Pit is vital for Pit-mediated disease resistance to rice blast fungus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号