共查询到20条相似文献,搜索用时 15 毫秒
1.
Crohn's disease (CD) is a chronic intestinal inflammatory pathology, which develops as a result of innate immune signals, such as the activation of Toll-like receptors (TLRs), and adaptive immune signals, including Th1 cytokine release. We have recently demonstrated in TNBS-induced colitis, a murine model of CD, that VIP plays a homeostatic role, by reducing TNBS-induced TLR2 and TLR4 expression to control levels. The purpose of this paper is to elucidate for the first time, the physiological relevance of VIP specific control of innate and adaptive immune responses through TLR2 and TLR4 ligands. In addition, we investigated the effect of VIP on regulatory activity of T regulatory (Treg) cells in the TNBS-colitis model. First, we found that VIP downregulated the inflammatory response elicited in mesenteric lymph node cell cultures by treatment with the TLR2 ligand Pam3Cys, or the TLR4 ligand lipopolysaccharide (LPS), reducing the production of the chemokine CXCL1. Also, treatment with VIP impaired the induction of Th1 responses by decreasing p70 interleukin (IL)-12 and interferon gamma (IFN-γ) levels after TLR2/TLR4 stimulation in culture. Besides, VIP treatment restored in vivo the numbers of TLR2 and TLR4 positive CD4+CD25+ T lymphocytes, augmented by TNBS administration, and increased the expression of molecules involved in regulatory T cell function, such as Foxp3 and TGF-β. In conclusion, the ability of VIP to down-regulate uncontrolled inflammation by targeting TLR-mediated responses and regulatory T cell activity could be used as a new alternative therapy for intestinal inflammatory/autoimmune disorders. 相似文献
2.
Dubourdeau M Athman R Balloy V Huerre M Chignard M Philpott DJ Latgé JP Ibrahim-Granet O 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(6):3994-4001
Aspergillus fumigatus causes invasive aspergillosis in immunosuppressed patients. In the immunocompetent host, inhaled conidia are cleared by alveolar macrophages. The signaling pathways of the alveolar macrophage involved in the clearance of A. fumigatus are poorly understood. Therefore, we investigated the role of TLRs in the immune response against A. fumigatus and their contribution to the signaling events triggered in murine alveolar macrophages upon infection with A. fumigatus conidia. Specifically, we examined the MAPKs and NF-kappaB activation and cytokine signaling. Our investigations revealed that immunocompetent TLR2, TLR4, and MyD88 knockout mice were not more susceptible to invasive aspergillosis as compared with wild-type mice and that the in vitro phosphorylation of the MAPKs ERK and p38 was not affected in TLR2, TLR4, or MyD88 knockout mice following stimulation with conidia. In vivo experiments suggest that ERK was an essential MAPK in the defense against A. fumigatus, whereas the activation of NF-kappaB appeared to play only a secondary role. In conclusion, our findings demonstrate that TLR2/4 recognition and MyD88 signaling are dispensable for the clearance of A. fumigatus under immunocompetent situations. Furthermore, our data stress the important role of ERK activation in innate immunity to A. fumigatus. 相似文献
3.
Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses 总被引:7,自引:0,他引:7
Warger T Hilf N Rechtsteiner G Haselmayer P Carrick DM Jonuleit H von Landenberg P Rammensee HG Nicchitta CV Radsak MP Schild H 《The Journal of biological chemistry》2006,281(32):22545-22553
Activation of dendritic cells by ligands for Toll-like receptors (TLR) is a crucial event in the initiation of innate and adaptive immune responses. Several classes of TLR ligands have been identified that interact with distinct members of the TLR-family. TLR4 ligands include lipopolysaccharide derived from different Gram-negative bacteria and viral proteins. Recent reports have demonstrated the TLR-mediated activation of dendritic cells by heat shock proteins (HSPs). However, doubts were raised as to what extent this effect was due to lipopolysaccharide contaminations of the HSP preparations. We re-examined this phenomenon using Gp96 or its N-terminal domain, nominally endotoxin-free (<0.5 enzyme units/mg). As described previously, innate immune cells are activated by Gp96 at high concentrations (> or =50 microg/ml) but not at lower concentrations. However, preincubation of low amounts of Gp96 with TLR2 and TLR4 ligands at concentrations unable to activate dendritic cells by themselves results in the production of high levels of proinflammatory cytokines, up-regulation of activation markers, and amplification of T cell activation. Our results provide significant new insights into the mechanism of HSP-mediated dendritic cell activation and present a new function of HSPs in the amplification of dendritic cell activation by bacterial products and induction of adaptive immune responses. 相似文献
4.
5.
Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses 总被引:13,自引:0,他引:13
Fukao T Frucht DM Yap G Gadina M O'Shea JJ Koyasu S 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(7):4446-4455
Autocrine activation of APC by IL-12 has recently been revealed; we demonstrate here that inducible expression of Stat4 in APC is central to this process. Stat4 is induced in dendritic cells (DC) in a maturation-dependent manner and in macrophages in an activation-dependent manner. Stat4 levels directly correlate with IL-12-dependent IFN-gamma production by APC as well as IFN-gamma production by DC during Ag presentation. The Th2 cytokines IL-4 and IL-10 suppress Stat4 induction in DC and macrophages when present during maturation and activation, respectively, diminishing IFN-gamma production. In contrast, IL-4 has no effect on Stat4 levels in mature DC and actually augments IFN-gamma production by DC during Ag presentation, indicating that IL-4 acts differently in a spatiotemporal manner. The functional importance of Stat4 is evident in Stat4(-/-) DC and macrophages, which fail to produce IFN-gamma. Furthermore, Stat4(-/-) macrophages are defective in NO production in response to IL-12 and are susceptible to TOXOPLASMA: Autocrine IL-12 signaling is required for high-level IFN-gamma production by APC at critical stages in both innate and adaptive immunity, and the control of Stat4 expression is likely an important regulator of this process. 相似文献
6.
Chiang CY Engel A Opaluch AM Ramos I Maestre AM Secundino I De Jesus PD Nguyen QT Welch G Bonamy GM Miraglia LJ Orth AP Nizet V Fernandez-Sesma A Zhou Y Barton GM Chanda SK 《Cell host & microbe》2012,11(3):306-318
Highlights? RNAi and systems-based analysis identified 190 TLR7/9 signaling cofactors ? Pathway crossprofiling enabled mapping cofactors to specific NFκB signaling modules ? HRS is a mediator of ubiquitin-dependent nondegradative endosomal TLR sorting 相似文献
7.
Jack CS Arbour N Manusow J Montgrain V Blain M McCrea E Shapiro A Antel JP 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(7):4320-4330
The specific signals mediating the activation of microglia and astrocytes as a prelude to, or consequence of, CNS inflammation continue to be defined. We investigated TLRs as novel receptors mediating innate immune responses in human glial cells. We find that microglia express mRNA for TLRs 1-9, whereas astrocytes express robust TLR3, low-level TLR 1, 4, 5, and 9, and rare-to-undetectable TLR 2, 6, 7, 8, and 10 mRNA (quantitative real-time PCR). We focused on TLRs 3 and 4, which can signal through both the MyD88-dependent and -independent pathways, and on the MyD88-restricted TLR2. By flow cytometry, we established that microglia strongly express cell surface TLR2; TLR3 is expressed at higher levels intracellularly. Astrocytes express both cell surface and intracellular TLR3. All three TLRs trigger microglial activation upon ligation. TLR3 signaling induces the strongest proinflammatory polarizing response, characterized by secretion of high levels of IL-12, TNF-alpha, IL-6, CXCL-10, and IL-10, and the expression of IFN-beta. CXCL-10 and IL-10 secretion following TLR4 ligation are comparable to that of TLR3; however, other responses were lower or absent. TLR2-mediated responses are dominated by IL-6 and IL-10 secretion. Astrocytes respond to TLR3 ligation, producing IL-6, CXCL-10, and IFN-beta, implicating these cells as contributors to proinflammatory responses. Initial TLR-mediated glial activation also regulates consequent TLR expression; while TLR2 and TLR3 are subject to positive feedback, TLR4 is down-regulated in microglia. Astrocytes up-regulate all three TLRs following TLR3 ligation. Our data indicate that activation of innate immune responses in the CNS is not homogeneous but rather tailored according to cell type and environmental signal. 相似文献
8.
Leptin is produced primarily by adipocytes and functions in a feedback loop regulating body weight. Leptin deficiency results
in severe obesity and a variety of endocrine abnormalities in animals and humans. Several studies indicated that leptin plays
an important role in immune responses. It exerts protective anti-inflammatory effects in models of acute inflammation and
during activation of innate immune responses. In contrast, leptin stimulates T lymphocyte responses, thus having rather a
proinflammatory role in experimental models of autoimmune diseases. Clinical studies have so far yielded inconsistent results,
suggesting a rather complex role for leptin in immune-mediated inflammatory conditions in humans. 相似文献
9.
Silverman JM Clos J Horakova E Wang AY Wiesgigl M Kelly I Lynn MA McMaster WR Foster LJ Levings MK Reiner NE 《Journal of immunology (Baltimore, Md. : 1950)》2010,185(9):5011-5022
We investigated the properties of leishmania exosomes with respect to influencing innate and adaptive immune responses. Exosomes from Leishmania donovani modulated human monocyte cytokine responses to IFN-γ in a bimodal fashion by promoting IL-10 production and inhibiting that of TNF-α. Moreover, these vesicles were inhibitory with respect to cytokine responses (IL-12p70, TNF-α, and IL-10) by human monocyte-derived dendritic cells. Exosomes from wild-type (WT) L. donovani failed to prime monocyte-derived dendritic cells to drive the differentiation of naive CD4 T cells into IFN-γ-producing Th1 cells. In contrast, vesicles from heat shock protein (HSP)100(-/-) L. donovani showed a gain-of-function and proinflammatory phenotype and promoted the differentiation of naive CD4 lymphocytes into Th1 cells. Proteomic analysis showed that exosomes from WT and HSP100(-/-) leishmania had distinct protein cargo, suggesting that packaging of proteins into exosomes is dependent in part on HSP100. Treatment of C57BL/6 mice with WT L. donovani exosomes prior to challenge with WT organisms exacerbated infection and promoted IL-10 production in the spleen. In contrast, HSP100(-/-) exosomes promoted spleen cell production of IFN-γ and did not adversely affect hepatic parasite burdens. Furthermore, the proparasitic properties of WT exosomes were not species specific because BALB/c mice exposed to Leishmania major exosomes showed increased Th2 polarization and exacerbation of disease in response to infection with L. major. These findings demonstrate that leishmania exosomes are predominantly immunosuppressive. Moreover, to our knowledge, this is the first evidence to suggest that changes in the protein cargo of exosomes may influence the impact of these vesicles on myeloid cell function. 相似文献
10.
Riccioli A Starace D Galli R Fuso A Scarpa S Palombi F De Cesaris P Ziparo E Filippini A 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(10):7122-7130
TLRs play a crucial role in early host defense against invading pathogens. In the seminiferous epithelium, Sertoli cells are the somatic nurse cells that mechanically segregate germ cell autoantigens by means of the blood-tubular barrier and create a microenvironment that protects germ cells from both interstitial and ascending invading pathogens. The objective of this study was to examine TLR expression and their functional responses to specific agonists in mouse Sertoli cells. We measured the expression of TLR2, TLR4, TLR5, and TLR6 mRNAs and confirmed by FACS analysis the presence of proteins TLR2 and TLR5 on which we focused our study. Stimulation of Sertoli cells with macrophage-activating lipopeptide-2, agonist of TLR2/TLR6, and with flagellin, agonist of TLR5, induces augmented secretion of the chemokine MCP-1. To assess the functional significance of MCP-1 production following TLR stimulation, conditioned medium from either macrophage-activating lipopeptide-2 or flagellin-treated Sertoli cells was tested for in vitro chemotaxis assay, and a significant increase of macrophage migration was observed in comparison with unstimulated conditioned medium. Moreover, we studied the role of NF-kappaB and of MAPKs in regulating TLR-mediated MCP-1 secretion by using inhibitors specific for each transduction pathway and we demonstrated a pivotal role of the IkappaB/NF-kappaB and JNK systems. In addition, TLR2/TLR6 and TLR5 stimulation induces increased ICAM-1 expression in Sertoli cells. Collectively, this study demonstrates the novel ability of Sertoli cells to potentially respond to a wide variety of bacteria through TLR stimulation. 相似文献
11.
Beutler B Hoebe K Georgel P Tabeta K Du X 《Microbes and infection / Institut Pasteur》2004,6(15):1374-1381
The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as "Toll-like receptors" (TLRs), of which 10 representatives are encoded in the human genome. Our understanding of the sensing role played by the TLRs began with the positional cloning of a spontaneous mutation (Lps(d)) in the gene encoding the mammalian lipopolysaccharide (LPS) receptor. Other key innate immunity proteins have been disclosed by germline mutagenesis, and are discussed in the present review. 相似文献
12.
Host organisms have developed sophisticated antiviral responses in order to defeat emerging influenza A viruses (IAVs). At the same time IAVs have evolved immune evasion strategies. The immune system of mammals provides several lines of defence to neutralize invading pathogens or limit their replication. Here, we summarize the mammalian innate and adaptive immune mechanisms involved in host defence against viral infection and review strategies by which IAVs avoid, circumvent or subvert these mechanisms. We highlight well‐characterized, as well as recently described features of this intriguing virus‐host molecular battle. 相似文献
13.
Appledorn DM Patial S McBride A Godbehere S Van Rooijen N Parameswaran N Amalfitano A 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(3):2134-2144
Adenovirus (Ad) vectors are promising candidates for both gene transfer and vaccine applications. In this study, we investigated the role of TLR2 in innate and adaptive immune responses to Ad and/or the transgene it expresses following systemic injection. We found that Ad directly activates ERK1/2 in vivo, but that initiation of ERK1/2 activation is primarily a MyD88/TLR2-independent, but Kupffer cell-dependent, event. The complexity of Ad-induced innate immune responses was confirmed when we also found that both TLR2 and MyD88 functions are required for the sustained activation of ERK1/2. Although we found that the initial activation of NF-kappaB by Ads is dependent upon MyD88, but independent of TLR2 in (non-Kupffer cells) the liver, TLR2 significantly influenced the Ad-induced late phase NF-kappaB activation. These very rapid responses were positively correlated with subsequent innate immune responses to the Ad vector, as our results confirmed that the induction of several cytokines and chemokines, and the expression of innate immune response genes following Ad injection were TLR2 dependent in vivo. The requirement of TLR2 in Ad-induced innate responses also correlated with significantly altered adaptive immune responses. For example, our results demonstrate that the generation of Ad-neutralizing Abs, and anti-transgene-specific Abs elicited subsequent to Ad vector treatments, are both dependent upon TLR2 functionality. Finally, we found that several Ad-induced innate immune responses are dependent on both TLR2 and TLR9. Therefore, this study confirms that several (but not all) Ad-induced innate and adaptive immune responses are TLR dependent. 相似文献
14.
The biology of IL-12: coordinating innate and adaptive immune responses 总被引:13,自引:0,他引:13
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of na?ve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation. 相似文献
15.
Effective innate and adaptive immune responses are essential for the control of hepatitis C virus (HCV) infection. Indeed, elimination of HCV during acute infection correlates with an early induction of innate and a delayed induction of adaptive immune responses. However, in the majority of acutely HCV-infected individuals, these responses are insufficient to clear the virus and persistence develops. In recent years, different mechanisms responsible for the failure of innate and adaptive immune responses have been identified. These include the proteolytic cleavage of molecules playing key roles in the induction of the interferon response, manipulation of interferon-induced effector proteins, interference with CD8+ T-cell function or immune escape in T- and B-cell epitopes. In this review, we discuss the possible roles of innate and adaptive immune responses in HCV clearance and the different evasion strategies used by the virus to escape these immune responses. 相似文献
16.
Heat shock proteins: the fountainhead of innate and adaptive immune responses 总被引:9,自引:0,他引:9 下载免费PDF全文
The ability of heat shock proteins to (1) chaperone peptides, including antigenic peptides; (2) interact with antigen-presenting cells through a receptor; (3) stimulate antigen-presenting cells to secrete inflammatory cytokines; and (4) mediate maturation of dendritic cells, makes them a unique starting point for generation of immune responses. These properties also permit the use of heat shock proteins for development of a new generation of prophylactic and therapeutic vaccines against cancers and infectious diseases. 相似文献
17.
Seleme MC Lei W Burg AR Goh KY Metz A Steele C Tse HM 《Free radical biology & medicine》2012,52(9):2047-2056
In type 1 diabetes (T1D), reactive oxygen species (ROS) and proinflammatory cytokines produced by macrophages and other innate immune cells destroy pancreatic β cells while promoting autoreactive T cell maturation. Superoxide-deficient nonobese diabetic mice (NOD.Ncf1m1J) are resistant to spontaneous diabetes, revealing the integral role of ROS signaling in T1D. Here, we evaluate the innate immune activation state of bone marrow-derived macrophages (BM-M?) from NOD and NOD.Ncf1m1J mice after poly(I:C)-induced Toll-like receptor 3 (TLR3) signaling. We show that ROS synthesis is required for efficient activation of the NF-κB signaling pathway and concomitant expression of TLR3 and the cognate adaptor molecule, TRIF. Poly(I:C)-stimulated NOD.Ncf1m1J BM-M? exhibited a 2- and 10-fold decrease in TNF-α and IFN-β proinflammatory cytokine synthesis, respectively, in contrast to NOD BM-M?. Optimal expression of IFN-α/β is not solely dependent on superoxide synthesis, but requires p47phox to function in a NOX-independent manner to mediate type I interferon synthesis. Interestingly, MHC-II I-Ag7 expression necessary for CD4 T cell activation is increased 2-fold relative to NOD, implicating a role for superoxide in I-Ag7 downregulation. These findings suggest that defective innate immune-pattern-recognition receptor activation and subsequent decrease in TNF-α and IFN-β proinflammatory cytokine synthesis necessary for autoreactive T cell maturation may contribute to the T1D protection observed in NOD.Ncf1m1J mice. 相似文献
18.
5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection 总被引:1,自引:0,他引:1
Secatto A Rodrigues LC Serezani CH Ramos SG Dias-Baruffi M Faccioli LH Medeiros AI 《PloS one》2012,7(3):e31701
5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis. 相似文献
19.
Macrophages are known to express various types of endocytosis receptors that mediate the removal of foreign pathogens. Macrophage
asialoglycoprotein-binding protein (M-ASGP-BP) is a Gal/GalNAc-specific lectin, which functions as an endocytosis receptor.
We found here that LPS is able to down-regulate the mRNA expression of M-ASGP-BP in a time-dependent manner using thioglycolate-elicited
rat and mouse peritoneal macrophages. However, LPS does not modulate the mRNA expression of M-ASGP-BP from macrophages of
C3H/HeN mice, which have a point mutation of TLR4, the primary LPS receptor. Furthermore, an inhibitor of NF-κB was observed
to efficiently block the suppressive effect of LPS on M-ASGP-BP as well as to inhibit the phosphorylated IκB. These results
demonstrate that the mRNA expression of M-ASGP-BP is down-regulated by the LPS-mediated TLR4 pathway involving NF-κB activation,
suggesting that engagement of M-ASGP-BP by LPS may yield a negative signal that interferes with the LPS-induced positive signals
mediated by proinflammatory cytokines. 相似文献
20.
We have developed small peptide mimetics of IFN-gamma that can bypass the poxvirus virulence factor B8R protein, which binds to intact IFN-gamma and prevents its interaction with receptor extracellular domain. Thus, these peptides inhibit vaccinia virus replication in cell culture where intact IFN-gamma is ineffective. We demonstrate here that the mouse IFN-gamma-mimetic peptide, IFN-gamma(95-132), protects C57BL/6 mice against overwhelming lethal vaccinia virus infection. The mimetic peptide was synthesized with an attached lipophilic group for penetration of cell plasma membrane. Injection of mimetic i.p. before and at the time of intranasal (10(6) PFU) or i.p. (10(7) PFU) challenge with virus resulted in complete protection at 200 microg of mimetic and 40-60% protection at 5 microg of mimetic. Initiation of treatment of mice with IFN-gamma mimetic up to 2 days postinfection resulted in complete protection against death, whereas initiation of treatment at 6 days postinfection resulted in 40% protection. Administration of mimetic by the oral route also completely protected mice against the intranasal route of a lethal dose of vaccinia virus challenge. In addition to its direct antiviral effect, the mimetic also possessed adjuvant effects in boosting humoral and cellular immunity to vaccinia virus. The combination of antiviral and adjuvant effects by the IFN mimetic probably plays a role in its potent anti-vaccinia virus properties. These results suggest an effective therapeutic against ongoing, lethal poxvirus infections that taps into innate and adaptive host defenses. 相似文献