首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid–liquid phase separation (LLPS) is a mechanism of intracellular organization that underlies the assembly of a variety of RNP granules. Fundamental biophysical principles governing LLPS during granule assembly have been revealed by simple in vitro systems, but these systems have limitations when studying the biology of complex, multicomponent RNP granules. Visualization of RNP granules in cells has validated key principles revealed by simple in vitro systems, but this approach presents difficulties for interrogating biophysical features of RNP granules and provides limited ability to manipulate protein, nucleic acid, or small molecule concentrations. Here, we introduce a system that builds upon recent insights into the mechanisms underlying RNP granule assembly and permits high-fidelity reconstitution of stress granules and the granular component of nucleoli in mammalian cellular lysate. This system fills the gap between simple in vitro systems and live cells and allows for a variety of studies of membraneless organelles, including the development of therapeutics that modify properties of specific condensates.  相似文献   

2.
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.  相似文献   

3.
A heterogeneous RNP structure has been isolated from rat liver nuclei by a method previously used for the isolation of 30S RNP complexes carrying heterogeneous RNA (hnRNA) [1]. The RNP sediments in sucrose gradients with s-values of 70-110S. Formaldehyde-fixed preparations band at Q = 1.40 in isopycnic CsCl gradients. The RNP structure is composed of a heterogeneous population of polypeptides, prominent among which are two proteins with Mr 74000 and 72000. It contains both rapidly labelled RNA as well as several species of snRNA, as demonstrated by double-labelling experiments and gel electrophoresis. Treatment of rats with alpha-amanitin leads to a significant decrease in the amount of recovered RNP. In the presence of 0.7 M NaCl the s-value of the complex changes from 70-110S to 40-80S. The RNP structure is stable to mild RNase A or micrococcal nuclease digestion. Transmission electron microscopy reveals the presence of a heterogeneous population of particles with a mean diameter of 300-360 A. The isolated RNP structure differs completely from the well-known monoparticle or polyparticle hnRNP complexes and from the 30S or smaller snRNP particles but could be similar to or identical with the heterogeneous complex described by Jacob et al. [29].  相似文献   

4.
Much attention is currently being devoted to questions of protein and RNA tertiary structures and to the quaternary arrangement of the individual macromolecules in ribonucleoprotein (RNP) particles. In this article we describe two complementary strategies that allow the identification of RNA-protein contact sites in assembled, nonlabeled RNP particles after UV crosslinking. The first combines immunoprecipitation of UV-irradiated RNP particles under mildly denaturing conditions followed by primer-extension analysis of the crosslinked (and thus coprecipitated) RNA. The second involves the purification of crosslinked peptide-oligonucleotide from RNP particles and the subsequent analysis of the crosslinked peptide and RNA by Edman degradation and matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), respectively. Although the first approach provides a rapid method for the exact identification of RNA-protein contact sites in purified nonlabeled RNP particles, the latter adds valuable information about potential RNA binding domains within proteins and, thus, about the arrangement of these proteins within the quaternary structures of complex RNP assemblies. Recently, we applied both these strategies successfully to native purified spliceosomal RNP. These methods may be generally applicable to the analysis of RNP complexes, especially as they avoid labeling and reconstitution, both of which risk introducing artifacts.  相似文献   

5.
Rat liver nuclear ribonucleoprotein particles were prepared by two different methods and defined as 40S ribonucleoprotein (40S RNP) and heterogeneous nuclear ribonucleoprotein (HnRNP) particles. The RNP particles were either solubilized in 8 M urea--6 mM 2-mercaptoethanol--20 mM glycine--20 mM Tris--HCl (pH 8.4) or subjected to removal of RNA by phenol extraction prior to solubilizing the proteins in the urea buffer. The proteins associated with 40S RNP and HnRNP were heterogeneous and very similar in their electrophoretic patterns when analyzed by two-dimensional PAGE, except a protein with molecular weight of 62 000 and an isoelectric point (pI) of 6.2 was present only in HnRNP particles. At least 12 major and 22 minor components could be identified in both preparations. The major proteins were found at pI values varying from 6.0 to 8.5 and with molecular weights from 32 000 to 42 000, and a group of proteins with molecular weight approximately 65 000 were more prominent in HnRNP than in 40S RNP. The other components were found mainly at pI ranges from 5.0 to 6.5 with molecular weights from 43 000 to 65 000. The phenol method extracted essentially all proteins associated with either 40S RNP and HnRNP, but was less effective in extracting a group of proteins with pI values from 5.0 to 5.5 and more efficient for proteins with pI values from 7.5 to 8.5. When chromatin proteins isolated by phenol extraction were compared with HnRNP particle proteins isolated by the same method, the electrophoretic mobilities of the HnRNP particle proteins were found to be identical with a fraction nonhistone chromatin proteins. The 40S RNP particles were further purified by metrizamide isopycnic density gradient centrifugation. The electrophoretic patterns of these proteins were very similar to those prepared by sucrose density gradient centrifugation. Therefore, we concluded that the proteins of RNP particles constituted part of the chromatin proteins.  相似文献   

6.
A method was developed to determine the contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to the nitrification potentials (NPs) of soils taken from forest, pasture, cropped, and fallowed (19 years) lands. Soil slurries were exposed to acetylene to irreversibly inactivate ammonia monooxygenase, and upon the removal of acetylene, the recovery of nitrification potential (RNP) was monitored in the presence and absence of bacterial or eukaryotic protein synthesis inhibitors. For unknown reasons, and despite measureable NPs, RNP did not occur consistently in forest soil samples; however, pasture, cropped, and fallowed soil RNPs commenced after lags that ranged from 12 to 30 h after acetylene removal. Cropped soil RNP was completely prevented by the bacterial protein synthesis inhibitor kanamycin (800 μg/ml), whereas a combination of kanamycin plus gentamicin (800 μg/ml each) only partially prevented the RNP (60%) of fallowed soils. Pasture soil RNP was completely insensitive to either kanamycin, gentamicin, or a combination of the two. Unlike cropped soil, pasture and fallowed soil RNPs occurred at both 30°C and 40°C and without supplemental NH(4)(+) (≤ 10 μM NH(4)(+) in solution), and pasture soil RNP demonstrated ~ 50% insensitivity to 100 μM allyl thiourea (ATU). In addition, fallowed and pasture soil RNPs were insensitive to the fungal inhibitors nystatin and azoxystrobin. This combination of properties suggests that neither fungi nor AOB contributed to pasture soil RNP and that AOA were responsible for the RNP of the pasture soils. Both AOA and AOB may contribute to RNP in fallowed soil, while RNP in cropped soils was dominated by AOB.  相似文献   

7.
Ribonucleoproteins (RNPs) isolated from infectious and defective interfering (DI) influenza virus (WSN) contained three major RNP peaks when analyzed in a glycerol gradient. Peak I RNP was predominant in infectious virus but was greatly reduced in DI virus preparations. Conversely, peak III RNP was elevated in DI virus, suggesting a large increase in DI RNA in this fraction. Labeled [(32)P]RNA was isolated from each RNP region and analyzed by electrophoresis on polyacrylamide gels. Peak I RNP contained primarily the polymerase and some HA genes, peak II contained some HA gene but mostly the NP and NA genes, and peak III contained the M and NS genes. In addition, peak III RNP from DI virus also contained the characteristic DI RNA segments. Interference activity of RNP fractions isolated from infectious and DI virus was tested using infectious center reduction assay. RNP peaks (I, II, and III) from infectious virus did not show any interference activity, whereas the peak III DI RNP caused a reduction in the number of infectious centers as compared to controls. Similar interference was not demonstrable with peak I RNP of DI virus nor with any RNP fractions from infectious virus alone. The interference activity of RNP fractions was RNase sensitive, suggesting that the DI RNA contained in DI RNPs was the interfering agent, and dilution experiments supported the conclusion that a single DI RNP could cause interference. The interfering RNPs were heterogeneous, and the majority migrated slower than viral RNPs containing M and NS genes. These results suggest that DI RNP (or DI RNA) is also responsible for interference in segmented, negative-stranded viruses.  相似文献   

8.
Positive-strand RNA viruses replicate their RNA genome within a ribonucleoprotein (RNP) complex that is associated with cellular membranes. We used a two-step method of purification to isolate hepatitis C virus (HCV) RNP complexes from human hepatoma cell line Huh7, which stably expresses HCV subgenomic replicons. The procedure involved hybridization of replicon-expressing cellular lysates with oligonucleotides tagged with biotin and digoxigenin at their respective termini complementary to subgenomic replicon RNA followed by avidin-agarose enrichment of the mixture and subsequent immunoprecipitation of biotin-eluted material with anti-digoxigenin antibody. The immunoprecipitates were immunoblotted with antisera against HCV nonstructural (NS) proteins. The analysis revealed the association of all the HCV NS proteins (NS3, NS4a, NS4b, NS5a, and NS5b) that are encoded by the subgenomic replicon RNA. The HCV RNP complex migrated in a native polyacrylamide gel with an approximate molecular mass of 450 kD. The association of these viral proteins in the RNP complex reinforces the widely acknowledged notion that RNA viruses accomplish replication within a membranous RNP complex.  相似文献   

9.
Abstract— Brain RNP particles were characterized to determine whether they play a role in the regulation of brain protein synthesis. RNP particles were isolated from the postribosomal supernatant of cerebral hemispheres of young rabbits, employing conditions which minimize adventitious protein-RNA interactions. Brain RNP particles consist of a different set of proteins compared to proteins associated with either 40 and 60s ribosomal subunits or polysomal mRNA. Poly(A+)mRNA from brain RNP particles stimulates the incorporation of [35S]methionine in a wheat embryo cell-free system and codes for a different set of proteins compared to poly(A+)mRNA isolated from polysomes (with some overlap; i.e. mRNA coding for brain-specific S100 protein is present in both RNP particles and polysomes).
Addition of total brain RNP particles to a cell-free wheat embryo system inhibits the endogenous incorporation of [35S]methionine. Total RNP particles were fractionated by sucrose density gradient centrifugation into a'light'and a'heavy'fraction. The light RNP fraction inhibited while the heavy RNP fraction stimulated protein synthesis in the wheat embryo cell-free system. Analysis of the protein composition of fractionated RNP particles revealed that the light and heavy RNP particles contained different sets of proteins. Together these results suggested that one class of brain RNP particles may contain a translational inhibitor and may be involved in the regulation of protein synthesis in the brain.  相似文献   

10.
蚕豆染色体周边RNP形成过程的电镜研究   总被引:1,自引:0,他引:1  
本文运用Bernhard染色方法研究了蚕豆根端分生组织细胞中染色体周边RNP的超微结构以及这种周边RNP在有丝分裂前期到中期的形成过程。我们观察到,在前期核仁解体过程中,来自核仁的RNP物质结合于染色体表面,形成染色体周边RNP。前期末时,大量核仁RNP颗粒向周围扩散并进一步结合于染色体表面,使染色体周边RNP有所增加。中期染色体的周边RNP明显多于前期,由直径15-20 nm的RNP颗粒构成。RNP物质在染色体周边的分布是不均匀的。姊妹染色单体之间往往有较多的RNP物质存在。本文观察结果表明染色体周边RNP来源于核仁RNP。  相似文献   

11.
Ribonucleoprotein complex formation during pre-mRNA splicing in vitro.   总被引:36,自引:9,他引:27       下载免费PDF全文
The ribonucleoprotein (RNP) structures of the pre-mRNA and RNA processing products generated during in vitro splicing of an SP6/beta-globin pre-mRNA were characterized by sucrose gradient sedimentation analysis. Early, during the initial lag phase of the splicing reaction, the pre-mRNA sedimented heterogeneously but was detected in both 40S and 60S RNP complexes. An RNA substrate lacking a 3' splice site consensus sequence was not assembled into the 60S RNP complex. The two splicing intermediates, the first exon RNA species and an RNA species containing the intron and the second exon in a lariat configuration (IVS1-exon 2 RNA species), were found exclusively in a 60S RNP complex. These two splicing intermediates cosedimented under a variety of conditions, indicating that they are contained in the same RNP complex. The products of the splicing reaction, accurately spliced RNA and the excised IVS1 lariat RNA species, are released from the 60S RNP complex and detected in smaller RNP complexes. Sequence-specific RNA-factor interactions within these RNP complexes were evidenced by the preferential protection of the pre-mRNA branch point from RNase A digestion and protection of the 2'-5' phosphodiester bond of the lariat RNA species from enzymatic debranching. The various RNP complexes were further characterized and could be distinguished by immunoprecipitation with anti-Sm and anti-(U1)RNP antibodies.  相似文献   

12.
An affinity resin-based pull-down method is convenient for the purification of biochemical materials. However, its use is difficult for the isolation of a molecular complex fully loaded with multiple components from a reaction mixture containing the starting materials and intermediate products. To overcome this problem, we have developed a new purification procedure that depends on sequential elimination of the residues. In practice, two affinity resins were used for purifying a triangular-shaped RNP (RNA-protein complex) consisting of three ribosomal proteins (L7Ae) bound to an RNA scaffold. First, a resin with immobilized L7Ae protein captured the incomplete RNP complexes and the free RNA scaffold. Next, another resin with an immobilized chemically modified RNA of a derivative of Box C/D motif, the binding partner of L7Ae, was used to capture free protein. The complete triangular RNP was successfully purified from the mixture by these two steps. Obviously, the purified triangular RNP displaying three protein-binding peptides exhibited an improved performance when compared with the unrefined product. Conceptually, this purification procedure should be applicable for the purification of a variety of complexes consisting of multiple components other than RNP.  相似文献   

13.
Chicken bone marrow cells transformed by reticuloendotheliosis virus (REV) produce in the cytoplasm a ribonucleoprotein (RNP) complex which has a sedimentation value of approximately 80 to 100S and a density of 1.23 g/cm3. This RNP complex is not derived from the mature virion. An endogenous RNA-directed DNA polymerase activity is associated with the RNP complex. The enzyme activity was completely neutralized by anti-REV DNA polymerase antibody but not by anti-avian myeloblastosis virus DNA polymerase antibody. The DNA product from the endogenous RNA-directed DNA polymerase reaction of the RNP complex hybridized to REV RNA but not to avian leukosis virus RNA. The RNA extracted from the RNP hybridized only to REV-specific complementary DNA synthesized from an endogenous DNA polymerase reaction of purified REV. The size of the RNA in the RNP is 30 to 35S, which represents the subunit size of the genomic RNA. No 60S mature genomic RNA was found within the RNP complex. The significance of finding the endogenous DNA polymerase activity in the viral RNP in infected cells and the maturation process of 60S virion RNA of REV are discussed.  相似文献   

14.
A soluble, homogeneous ribonucleoprotein (RNP) fragment was extracted from rat brain. The chemical structure and the conformation of this fragment were affected by environmental conditions or by the administration of lysergic acid diethylamidie (LSD). Rats raised for one month in permanent light or darkness showed a difference in RNP conformation; also, the treatment with LSD yielded an RNP conformation different from the control. The RNP fragment has a protein-RNA ratio which differs either with environment or with chemical treatment. The molecular weight of RNP was approx. 31 000 and its thermal hysteresis, circular dichroism and permanent polarization seem influenced by environmental differences. A chemical interaction between LSD and RNP was shown in vitro which might partially explain what is observed on the RNP extracted after treatment with LSD.  相似文献   

15.
The cytoplasm of early sea urchin embryos contains nonribosomal, high molecular weight RNA both associated with ribosomes in polysomes and free of ribosomes in particles termed free RNP. In a 1-hr labeling period, 50% of the newly synthesized RNA enters the pool of ribosome-free RNP particles during the cleavage stages, and this percentage decreases until less than 20% of the new RNA in the mesenchyme blastula stage is found in the free RNP. mRNA from both polysomes and free RNP contain poly(A)(+) and poly(A)(?) species. During the cleavage stages only 8–10% of the RNA from each fraction is polyadenylated; however, in the blastula, 40–50% of the nonhistone polysomal RNA is polyadenylated while only 22–30% of the free RNP RNA is polyadenylated. At any developmental stage, the poly(A)(+)RNA from the free RNA and polysomes have identical sedimentation profiles; this is also the case for the poly(A)(?)RNA except for the absence of the 9 S histone mRNA from the free RNP. Changes in poly(A)(+)RNA content and sedimentation profiles during development occur simultaneously in the free RNP and the polysomes. Kinetic studies of these two RNP populations as well as nuclear RNP show that the bulk of the free RNP are not unusually stable cytoplasmic components. The free RNP decay with a half-life of about 40 min while nuclear RNA and polysomal RNA display half-lives of about 12 and 65 min, respectively. Further, the rate of synthesis of the free RNP is not consistent with their being the only precursors for polysomes. Our estimates of the rates of synthesis for nuclear RNA, polysomes, and free RNP are, respectively, 1.1 × 10?15, 2.2 × 10?16, and 5.0 × 15?17 g/min/nucleus. The data on free RNP is discussed in terms of translational regulation of protein synthesis in the developing sea urchin.  相似文献   

16.
A method was developed for the isolation of a ribonucleoprotein fraction from chick oviduct nuclei that contains 70% of the pulse-labeled RNA. These fractions also contain about 1% of the nuclear DNA and have an average RNA to DNA ratio of about 4:1. The major nuclear RNP proteins of 32,000 Mr are present along with many additional proteins including histories. However, polysomal proteins and major oviduct cytoplasmic proteins are absent. Nuclei from fully stimulated chick oviduct contain about 3000 copies of ovalbumin messenger RNA sequences of which about 200 are in the RNP complexes: these complexes have sedimentation coefficients of 30 to 350 S and are resistant to disruption by EDTA.The level of ovalbumin mRNA sequences in these complexes reflects the overall rate of synthesis of this RNA. Withdrawal of estrogen leads to a parallel decline of nuclear estrogen receptors and ovalbumin mRNA sequences in the RNP complexes and a subsequent loss of cytoplasmic ovalbumin mRNA about three hours later. The 300-fold decrease in the level of ovalbumin mRNA sequences in these complexes and the eightfold decrease in stability of cytoplasmic ovalbumin mRNA account for the 2500-fold decrease in the level of cytoplasmic ovalbumin mRNA observed during withdrawal. Upon stimulation with estrogen, the kinetics of reappearance of ovalbumin mRNA sequences in the RNP complexes apparently accounts for the accumulation of cytoplasmic ovalbumin mRNA. Thus the nuclear RNP has some of the properties expected of nascent RNP complexes.The levels of ovalbumin and conalbumin mRNA sequences increase in the nuclear RNP with markedly different kinetics: conalbumin mRNA sequences reach half maximum by 1.5 hours, whereas ovalbumin mRNA sequences in these complexes reach half maximum at about eight hours. In the analysis in the accompanying Appendix, we show that the immediate increase of conalbumin mRNA sequences in the nuclear RNP may be accounted for by interaction of the hormone receptor complex with a single regulatory site, whereas the delayed increase of ovalbumin mRNA sequences in the RNP may be due to a requirement for interaction of the hormone receptor complex with multiple regulatory sites.  相似文献   

17.
The nuclear ribonucleoprotein (RNP) particles containing rapidly labeled RNA were isolated from interphase cells of the cellular slime mold Dictyostelium discoideum and characterized. The size of the isolated RNP particles was small (10S to 50S) in comparison with that of nuclear RNP particles found in higher eukaryotes. These small RNP particles do not seem to be artifacts due to degradation during the preparation of nuclear extracts. The rapidly labeled RNA of the nuclear RNP particles was heterogeneous in size and a considerable amount contained polyadenylic acid sequences. Synthesis of RNA in the nuclear RNP particles was resistant to a relatively high concentration of actinomycin D. The protein component of the RNP particle consists of at least four proteins with molecular weights of 80,000, 66,000, 60,000, and 42,000. Thus it is suggested that almost all of the nuclear RNP particles containing rapidly labeled RNA in interphase cells are RNP complexes consisting of Heterogeneous nuclear RNA and several protein species.  相似文献   

18.
An RNA-binding protein of 28 kDa (28RNP) was previously isolated from spinach chloroplasts and found to be required for 3' end-processing of chloroplast mRNAs. The amino acid sequence of 28RNP revealed two approximately 80 amino-acid RNA-binding domains, as well as an acidic- and glycine-rich amino terminal domain. Upon analysis of the RNA-binding properties of the 'native' 28RNP in comparison to the recombinant bacterial expressed protein, differences were detected in the affinity to some chloroplastic 3' end RNAs. It was suggested that post-translational modification can modulate the affinity of the 28RNP in the chloroplast to different RNAs. In order to determine if phosphorylation accounts for this post-translational modification, we examined if the 28RNP is a phosphoprotein and if it can serve as a substrate for protein kinases. It was found that the 28RNP was phosphorylated when intact chloroplasts were metabolically labeled with [32P] orthophosphate, and that recombinant 28RNP served as an excellent substrate in vitro for protein kinase isolated from spinach chloroplasts or recombinant alpha subunit of maize casein kinase II. The 28RNP was apparently phosphorylated at one site located in the acidic domain at the N-terminus of the protein. Site-directed mutagenesis of the serines in that region revealed that the phosphorylation of the protein was eliminated when serine number 22 from the N-terminus was changed to tryptophan. RNA-binding analysis of the phosphorylated 28RNP revealed that the affinity of the phosphorylated protein was reduced approximately 3-4-fold in comparison to the non-phosphorylated protein. Therefore, phosphorylation of the 28RNP modulates its affinity to RNA and may play a significant role in its biological function in the chloroplast.  相似文献   

19.
A chloroplast (nuclear-encoded) RNA-binding protein (28RNP) was previously purified from spinach (Spinacia oleracea). This 28RNP was found to be the major RNA-binding protein co-purified during the isolation scheme of 3[prime] end RNA-processing activity of several chloroplastic genes. To learn more about the possible involvement of 28RNP in the 3[prime] end RNA-processing event, we investigated the RNA-binding properties and the location of the protein in the chloroplast. We found that recombinant Escherichia coliexpressed 28RNP binds with apparently the same affinity to every chloroplastic 3[prime] end RNA that was analyzed, as well as to RNAs derived from the 5[prime] end or the coding region of some chloroplastic genes. Differences in the RNA-binding affinities for some chloroplastic 3[prime] end RNAs were observed when the recombinant 28RNP was compared with the "native" 28RNP in the chloroplast-soluble protein extract. In addition, we found that the 28RNP is not associated with either thylakoid-bound or soluble polysomes in which a great portion of the chloroplast rRNA and mRNA are localized. These results suggest that the native 28RNP binds specifically to certain RNA molecules in the chloroplast in which other components (possibly proteins) and/or posttranslational modifications are involved in determining RNA-binding specificity of the 28RNP.  相似文献   

20.
Ribosomal precursor particles of Bacillus megaterium.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pulse-labeled cells of Bacillus megaterium were converted to protoplasts, and lysates of the protoplasts were analyzed by sucrose gradient sedimentation. Precursor ribonucleoprotein (RNP) particles then appeared predominantly as 50S and 30S precursor ribosomal subunits. Polyacrylamide gel electrophoresis of the ribosomal ribonucleic acid from the 50S and 30S RNP particles confirmed their precursor nature since they were shown to contain precursor 23S and 16S ribosomal ribonucleic acid, respectively. Treatment of protoplast lysates with 0.5% deoxycholate prior to sedimentation analysis resulted in a markedly different radioactivity profile. The 50S RNP particles were no longer present, but 43S particles were observed in addition to increased amounts of pulse-labeled material sedimenting at 30S and slower. Extracts from cells broken in a French press showed a profile from sucrose gradient sedimentation similar to that of the deoxycholate-treated protoplast lysate. These data suggest that the nature of the precursor ribosomal particles appears to be a function of the method of cell disruption or detergent treatment of the cell extract preparation. The observed 50S and 30S RNP particles may be the major precursor ribosomal subunits in vivo; the slower-sedimenting species could result from some form of breakdown or change in the configuration of the 50S and 30S precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号