首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h anoxic regime. After 11 volume changes at a dilution rate of 0.031 h−1 (35% of μmax) a time dependent equilibrium was established. During the 23 h oxic periods bacteriochlorophyll a synthesis (BChl a ) was not observed, whereas during the 1 h anoxic periods synthesis was maximal (i.e. 1.1 μg (mg protein)−1 h−1). As a result the BChl a concentration gradually increased from zero to an average value over 24 h of 1.9 μg (mg protein)−1. Concomitantly, the protein concentration increased from 13.9 mg 1−1 during continuous oxic conditions to 28.8 mg 1−1. For comparison, the protein concentration during fully phototrophic growth at an identical thiosulfate concentration in the inflowing medium was 53.7 mg 1−1. The specific respiration rate was 8 μmol O2 (mg protein)−1 h−1 during full chemotrophic growth and gradually decreased to 3.5 μmol O2 (mg protein)−1 h−1 after 11 volume changes at the regime employed. These data show that T. rosepersicina is able to simultaneously utilize light and aerobic respiration of thiosulfate as sources of energy. The ecological relevance of the data is discussed.  相似文献   

2.
A chemolithoautotrophic type of metabolism, which was hitherto unknown for purple nonsulfur bacteria, was demonstrated by growth experiments using Rhodopseudomonas capsulata Kb1 and Rhodopseudomonas acidophila 10050. These strains were able to grow in a mineral medium in the dark at the expense of H2, O2, and CO2. A minimum doubling time of 9 h was obtained for R. capsulata under an atmosphere containing less than 15% oxygen; higher oxygen concentrations suppressed autotrophic but not chemoorganotrophic growth. Oxygen sensitivity of chemoautotrophically growing cells of R. acidophila was even more pronounced, whereas cells growing chemotrophically on methanol almost tolerated the oxygen concentration of air. Highest oxygen sensitivity of growth of R. acidophila was observed with formate as substrate. The growth yield of cultures grown semiaerobically in the dark on methanol was 0.23 g dry cell material per g methanol consumed.  相似文献   

3.
The capacity for chemoautotrophic, mixotrophic and organotrophic growth in the dark was tested with 45 strains of 17 species (11 genera) of the Chromatiaceae. The auxanographic deep agar shake culture method was used; the gas phase contained 5% O2 and 1% CO2 in N2. All strains tested of Chromatium vinosum, C. minus, C. violascens, C. gracile, Thiocystis violacea, Amoebobacter roseus, Thiocapsa roseopersicina gave positive growth responses under chemoautotrophic and mixotrophic conditions (extra carbon source acetate); one strain of Thiocapsa roseopersicina grew also organotrophically on acetate alone. No growth was obtained with the remaining 17 strains of ten species. None of the five type species (three genera) of the Chlorobiaceae grew under chemotrophic conditions. With Thiocystis violacea 2311 a growth yield of 11.3g dry weight per mol thiosulfate consumed was obtained under chemoautotrophic conditions; under mixotrophic conditions with acetate the yield increased to 69g dry weight per mol thiosulfate consumed. With Thiocystis violacea 2311 maximal specific respiration rates were obtained with thiosulfate as electron donor irrespective of the presence or absence of sulfur globules in the cells; organic substrates served as carbon sources only and did not support respiration. With Chromatium vinosum D utilization of thiosulfate was not constitutive; maximal respiration rates on thiosulfate were obtained only with thiosulfate grown cells containing sulfur globules. Respiration rates were further increased by malate, fumarate or propionate; these substrates also served as sole electron donors for respiration. Acetate and pyruvate were used as carbon sources only. The ecological significance of the chemotrophic metabolism is discussed.  相似文献   

4.
Aerobic microbial growth at low oxygen concentrations   总被引:5,自引:3,他引:5       下载免费PDF全文
Sterilizable membrane probes were used to study the relation between oxygen concentration and respiration rate in Candida utilis growing on acetate. When the organism was grown in a continuous fermentor at various dissolved oxygen concentrations (0.23 x 10(-6) to 32 x 10(-6)m), with time allowed for full adaptation to each oxygen concentration, the relationship between oxygen concentration and growth rate simulated Michaelis-Menten behavior, giving an apparent K(m) for oxygen of 1.3 x 10(-6)m. When respiration rate was measured at various oxygen concentrations without allowing time for adaptation, it was found that the respiration rate was directly proportional to O(2) concentration at low O(2) concentrations, and independent of O(2) concentration at high O(2) concentrations. Transition from one type of behavior to the other was fairly abrupt. The respiration rate in the presence of excess oxygen depended on the O(2) concentration at which the cells were grown, but the rate at low O(2) concentrations did not. There was evidence that, at low oxygen concentrations, oxygen diffusion through the cell substance limits respiration rate, at least in part.  相似文献   

5.
Azotobacter vinelandii was grown in continuous culture at constant dilution rate and at different molar ratios of sucrose to ammonium (C/N) in the inflowing medium. The organisms used up essentially all of the carbon and fixed nitrogen sources. Therefore, the (C/N)-ratio in the influent was the same as the (C/N)-ratio of consumption. Starting close to unity, slight increases of the (C/N)-ratio resulted in increases of cellular respiration. Concomitantly, growth yield coefficients on sucrose decreased while the total biomass stayed constant. At there low (C/N)-ratios growth was limited by ammonium with a yield coefficient on ammonium of about 0.07 g protein per mmol of ammonium. Eventually, however, upon furhter increasing the (C/N)-ratio, respiration as well as the yield coefficient on sucrose approached constant values while the biomass levels increased linearly. This result indicated that a transition to sucrose-limited growth had occurred. The (C/N)-ratio, above which respiration and yield coefficients on sucrose approached constancy, increased when the cultures were grown at higher oxygen tension. When the oxygen tension was higher, and at the same (C/N)-ratios, respiratory values increased, and biomass levels as well as yield coefficients decreased. The data suggest control of respiration and thus of growth yield by the ratio of sucrose to ammonium consumed. These observations infer that commencement of dinitrogen fixation kept the internal (C/N)-ratio constant and consequently respiration as well as yield coefficients on sucrose were maintained.  相似文献   

6.
Stable-isotope discrimination factors (D) for the uptake of oxygen during respiration by a variety of plant materials were determined by measuring 18O enrichment in a closed system. Baker's yeast (Saccharomyces cerevisiae Meyer) and mitochondrial preparations from baker's yeast and from castor bean (Ricinus communis L.) endosperm, all of which are fully sensitive to cyanide, discriminated againt 18O by about 16–18. Whole Medicago sativa L. seedlings, isolated intact Asparagus sprengeri Regel mesophyll cells, and spadix mitochondria of Eastern skunk cabbage (Symplocarpus foetidus L.) had higher Ds of about 20–22. These materials all had some capacity for the cyanide-resistant alternative respiration pathway and in the presence of cyanide discriminated by about 24–26. When treated with salicylhydroxamic acid or tetraethylthiuram disulfide, which inhibit the alternative pathway, discrimination was about 17–19. Where respiration was limited by oxygen diffusion (slices of thermogenic tissues from S. foetidus and Sauromatum gutfatum Schott), fractionation was much reduced and the difference between the two respiratory pathways was masked. Isotope discrimination by soybean lipoxygenase (EC 1.13.11.12) supplied with linoleic acid was much lower than by respiration. Where diffusion is not a problem, the D value obtained in the absence of inhibitor can be used to estimate the partitioning of electron transport between the two pathways at steady-state by linear interpolation between the Ds characteristic of cyanide-resistant and cyanide-sensitive respiration.Abbreviations D Discrimination factor - DS disulfiram (tetraethylthiuram disulfide) - MS5A Molecular Sieve 5A - SHAM salicylhydroxamic acid C.I.W.-D.P.B. Publication No. 1014  相似文献   

7.
Summary A new medium (MCDB 104) has been developed which will support clonal growth of WI-38 cells at concentrations of serum protein as low as 25 μg per ml (equivalent to 0.05% serum). The principal factors responsible for reduction of the protein requirement are: (a) adjustment of all nutrient concentrations in medium F12 to experimentally determined optimum values for WI-38 cells; (b) supplementation with trace elements; (c) replacement of hypoxanthine and folic acid with adenine and folinic acid; and (d) coating of the culture surface with polylysine. Individually, many of these modifications exert only a small effect on cellular growth at reduced protein concentrations, but collectively their effect has been very substantial. Other strains of fibroblast-like human diploid cells from amniotic fluid, fetal lung and newborn foreskin also will grow at reduced concentrations of serum protein in the new medium. This work was supported by Grant No. AG00310 from the National Institute on Aging, and by Contract No. 223-74-1156 from the Bureau of Biologics, U.S. Food and Drug Administration.  相似文献   

8.
Abstract: The aerobic chemotrophic sulfur bacterium Thiobacillus thioparus T5 and the anaerobic phototrophic sulfur bacterium Thiocapsa roseopersicina M1 were co-cultured in continuously illuminated chemostats at a dilution rate of 0.05 h−1. Sulfide was the only externally supplied electron donor, and oxygen and carbon dioxide served as electron acceptor and carbon source, respectively. Steady states were obtained with oxygen supplies ranging from non-limiting amounts (1.6 mol O2 per mol sulfide, resulting in sulfide limitation) to severe limitation (0.65 mol O2 per mol sulfide). Under sulfide limitation Thiocapsa was competitively excluded by Thiobacillus and washed out. Oxygen/sulfide ratios between 0.65 and 1.6 resulted in stable coexistence. It could be deduced that virtually all sulfide was oxidized by Thiobacillus . The present experiments showed that Thiocapsa is able to grow phototrophically on the partially oxidized products of Thiobacillus . In pure Thiobacillus cultures in steady state extracellular zerovalent sulfur accumulated, in contrast to mixed cultures. This suggests that a soluble form of sulfur at the oxidation state of elemental sulfur is formed by Thiobacillus as intermediate. As a result, under oxygen limitation colorless sulfur bacteria and purple sulfur bacteria do not competitively exclude each other but can coexist. It was shown that its ability to use partially oxidized sulfur compounds, formed under oxygen limiting conditions by Thiobacillus , helps explain the bloom formation of Thiocapsa in marine microbial mats.  相似文献   

9.
10.
Mitochondrial respiration at low levels of oxygen and cytochrome c   总被引:7,自引:0,他引:7  
In the intracellular microenvironment of active muscle tissue, high rates of respiration are maintained at near-limiting oxygen concentrations. The respiration of isolated heart mitochondria is a hyperbolic function of oxygen concentration and half-maximal rates were obtained at 0.4 and 0.7 microM O(2) with substrates for the respiratory chain (succinate) and cytochrome c oxidase [N,N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)+ascorbate] respectively at 30 degrees C and with maximum ADP stimulation (State 3). The respiratory response of cytochrome c-depleted mitoplasts to external cytochrome c was biphasic with TMPD, but showed a monophasic hyperbolic function with succinate. Half-maximal stimulation of respiration was obtained at 0.4 microM cytochrome c, which was nearly identical to the high-affinity K(')(m) for cytochrome c of cytochrome c oxidase supplied with TMPD. The capacity of cytochrome c oxidase in the presence of TMPD was 2-fold higher than the capacity of the respiratory chain with succinate, measured at environmental normoxic levels. This apparent excess capacity, however, is significantly decreased under physiological intracellular oxygen conditions and declines steeply under hypoxic conditions. Similarly, the excess capacity of cytochrome c oxidase declines with progressive cytochrome c depletion. The flux control coefficient of cytochrome c oxidase, therefore, increases as a function of substrate limitation of oxygen and cytochrome c, which suggests a direct functional role for the apparent excess capacity of cytochrome c oxidase in hypoxia and under conditions of intracellular accumulation of cytochrome c after its release from mitochondria.  相似文献   

11.
The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO2) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO2 and swimming speeds. At slow speed (0.65 BL s−1), progressive aquatic hypoxia triggered the first breath at a mean PO2 of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO2 of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min−1, ABO PO2 was 10.9 kPa, breath volume was 23.8 ml kg−1, rate of oxygen uptake from the ABO was 1.19 ml kg−1 min−1, and oxygen uptake per breath was 2.32 ml kg−1. At the fastest experimental speed (2.4 BL s−1) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg−1 min−1, through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO2 (1.7–26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.  相似文献   

12.
The rates of respiration and of egg production of the monogenean trematodes Diclidophora merlangi and Entobdella soleae were compared at different oxygen partial pressures. In D. merlangi the respiratory rate declined sharply as the oxygen pressure in the water fell and egg production almost ceased at pO2s little below air saturation. Diclidophora lives on the gills of a pelagic fish and the likelihood that the parasite normally has air saturated water passing over it is discussed. Both respiratory rate and egg production in E. soleae were almost independent of ambient pO2. Entobdella lives on the undersurface of a flat fish, which spends part of its time buried in sandy mud.  相似文献   

13.
Superoxide dismutase and catalase activities were studied in Azotobacter vinelandii grown diazotrophically at different ambient oxygen concentrations in continuous culture. Activities were expressed either as specific activity or activity per cell. Specific superoxide dismutase activity increased by a factor of 1.6 with increasing oxygen concentration from about 1% to 90% air saturation of the growth medium whereas specific catalase activity increased only slightly, if at all. Since cell volumes increased in parallel to increases in the oxygen concentration cellular superoxide dismutase activities increased by a factor of 4.3 while cellular catalase activities increased by a factor of 3.3. Under all conditions only the Fe-containing form of superoxide dismutase was detected. The possible function of these enzymes in the protection nitrogenase from oxygen damage is discussed.Abbreviation SOD superoxide dismutase  相似文献   

14.
Microbacterium thermosphactum was grown at 5°C and 9°C in glucose-limited continuous cultures. The end products of glucose metabolism were L-lactate and ethanol, and these compounds accounted for 86–92% of the glucose utilized. With input glucose concentrations less than 3 mM Y glu Max was found to be 40–43, Y ATP Max 20–21 and m s 0.1–0.2. These values are almost identical to those found previously for cultures at 25°C and show that this psychrotroph grows with a very high energetic efficiency over a wide range of temperatures. With a higher (but still limiting) input glucose concentration of 5.6 mM at 9°C, cellular efficiency declined as there was a marked reduction in Y glu. This decrease was accounted for in mathematical terms by an increase in m s to 0.7, whilst Y glu Max and Y ATP Max remained high at 38 and 19 respectively.  相似文献   

15.
16.
Escherichia coli and Pseudomonas aeruginosa grown in the presence of certain harmful organic solvents become susceptible to these solvents during the cultivation. This susceptibility is conspicuous in the stationary phase of growth. The organic solvent tolerance levels of these microorganisms were maintained when the oxygen concentration was kept high. The tolerance levels were maintained also when these organisms were grown with nitrate present under anaerobic respiratory conditions. Received: 21 March, 1997 / Accepted: July 20, 1997  相似文献   

17.
The ambivalent relations of sulfate-reducing bacteria to molecular O2 have been studied with ten freshwater and marine strains. Generally, O2 was reduced prior to sulfur compounds and suppressed the reduction of sulfate, sulfite or thiosulfate to sulfide. Three strains slowly formed sulfide at O2 concentrations of below 15 M (6% air saturation). In homogeneously aerated cultures, two out of seven strains tested, Desulfovibrio desulfuricans and Desulfobacterium autotrophicum, revealed weak growth with O2 as electron acceptor (up to one doubling of protein). However, O2 was concomitantly toxic. Depending on its concentration cell viability and motility decreased with time. In artificial oxygen-sulfide gradients with sulfide-containing agar medium and also in sulfide-free agar medium under an oxygen-containing gas phase, sulfate reducers grew in bands close to the oxic/anoxic interface. The specific O2 tolerance and respiration capacity of different strains led to characteristically stratified gradients. The maximum O2 concentration at the surface of a bacterial band (determined by means of microelectrodes) was 9 M. The specific rates of O2 uptake per cell were in the same order of magnitude as the sulfate reduction rates in pure cultures. The bacteria stabilized the gradients, which were rapidly oxidized in the absence of cells or after killing the cells by formaldehyde. The motile strain Desulfovibrio desulfuricans CSN slowly migrated in the gradients in response to changing O2 concentrations in the gas phase.  相似文献   

18.
19.
20.
When the growth of bacteria in a chemostat is controlled by limiting the supply of a single essential nutrient, the growth rate is affected both by the concentration of this nutrient in the culture medium and by the amount of time that it takes for the chemical and physiological processes that result in the production of new biomass. Thus, although the uptake of nutrient by cells is an essentially instantaneous process, the addition of new biomass is delayed by the amount of time that it takes to metabolize the nutrient. Mathematical models that incorporate this "delayed growth response" (DGR) phenomenon have been developed and analysed. However, because they are formulated in terms of parameters that are difficult to measure directly, these models are of limited value to experimentalists. In this paper, we introduce a DGR model that is formulated in terms of measurable parameters. In addition, we provide for this model a complete set of criteria for determining persistence versus extinction of the bacterial culture in the chemostat. Specifically, we show that DGR plays a role in determining persistence versus extinction only under certain ranges of chemostat operating parameters. It is also shown, however, that DGR plays a role in determining the steady-state nutrient and bacteria concentrations in all instances of persistence. The steady state and transient behavior of solutions of our model is found to be in agreement with data that we obtained in growing Escherichia coli 23716 in a chemostat with glucose as a limiting nutrient. One of the theoretical predictions of our model that does not occur in other DGR models is that under certain conditions a large delay in growth response might actually have a positive effect on the bacteria's ability to persist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号