首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 18O-enrichment of CO2 produced in the light or during the post-illumination burst was measured by mass spectrometry when a photoautotrophic cell suspension of Euphorbia characias L. was placed in photorespiratory conditions in the presence of molecular 18O2. The only 18O-labeled species produced was C18O16O; no C18O18O could be detected. Production of C18O16O ceased after addition of two inhibitors of the photosynthetic carbon-oxidation cycle, aminooxyacetate or aminoacetonitrile, and was inhibited by high levels of CO2. The average enrichment during the post-illumination burst was estimated to be 46 ± 15% of the enrichment of the O2 present during the preceding light period. Addition of exogenous carbonic anhydrase, by catalyzing the exchange between CO2 and H2O, drastically diminished the 18O-enrichment of the produced CO2. The very low carbonio-anhydrase level of the photoautotrophic cell suspension probably explains why the 18O labeling of photorespiratory CO2 could be observed for the first time. These data allow the establishment of a direct link between O2 consumption and CO2 production in the light, and the conclusion that CO2 produced in the light results, at least partially, from the mitochondrial decarboxylation of the glycine pool synthesized through the photosynthetic carbon-oxidation cycle. Analysis of the C18O16O and CO2 kinetics provides a direct and reliable way to assess in vivo the real contribution of photorespiratory metabolism to CO2 production in the light.  相似文献   

2.
Chen C  Gibbs M 《Plant physiology》1992,100(3):1361-1365
The oxyhydrogen reaction (the reduction of O2 to water by H2) in the presence of CO2 was studied in the isolated Chlamydomonas reinhardtii chloroplast by monitoring the rate of 14CO2 incorporation into acid-stable products in the dark. The endogenous rate of CO2 uptake (50-125 nmol/mg chlorophyll per h) was increased about 3- to 4-fold by ATP and additionally when combined with glucose, ribose-5-phosphate, and glycerate-3-phosphate. The rate was diminished 50 to 75%, respectively, when H2 was replaced by N2 or by air. Decrease in CO2 uptake by dl-glyceraldehyde was taken to indicate that the regenerative phase and complete Calvin cycle turnover were involved. Diminution of CO2 incorporation by rotenone, antimycin A, and 2,5-dibromo-3-methyl-6-isopropanol-p-benzoquinone was attributed to an inhibition of the oxyhydrogen reaction, resulting in an elevated NADPH/NADP ratio. If so, then the diminished CO2 uptake could have been by “product inhibition” of the carbon metabolic network. Our data are consistent with the proposal (H. Gaffron [1942] J Gen Physiol 26: 241-267) that CO2 fixation coupled to the oxyhydrogen reaction is dependent to some extent on exchloroplastic metabolism. This support is primarily ATP provided by mitochondrial respiration.  相似文献   

3.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

4.
Intact chloroplasts were isolated from protoplasts of the Crassulacean acid metabolism plant Sedum praealtum D.C. Typical rates of CO2 fixation or CO2-dependent O2 evolution ranged from 20 to 30 micromoles per milligram chlorophyll per hour and could be stimulated 30 to 50% by several Calvin cycle intermediates. The pH optimum for CO2 fixation was 7.0 to 7.6 with considerable activity as low as pH 6.4. Low concentrations of orthophosphate (Pi) (optimum 0.4 millimolar) stimulated photosynthesis while high concentrations (5 millimolar) caused some inhibition. Both CO2 fixation and CO2-dependent O2 evolution exhibited a relatively long lag phase (4 to 6 minutes) which remained constant between 0.4 to 5 millimolar Pi. The lag phase could be decreased by addition of dihydroxyacetone-phosphate or ribose 5-phosphate. Further results are presented which suggest these chloroplasts have a functional phosphate translocator.  相似文献   

5.
The aim of this study was to examine the role of brassinosteroids (BRs) in protecting the photosynthetic apparatus from cold‐induced damage in cucumber (Cucumis sativus) plants. Recovery at both high light (HL) and low light (LL) after a cooling at 10/7°C induced irreversible inhibition of CO2 assimilation, photoinhibition at photosystem I (PSI) and inhibition of enzyme activities of Calvin cycle and ascorbate (AsA)‐reduced glutathione (GSH) cycle, followed by accumulation of H2O2 and malondialdehyde. However, cold‐induced photoinhibition at PSII was fully recovered at LL but not at HL. Meanwhile, recovery at HL increased electron flux to O2‐dependent alternative pathway [Ja(O2‐dependent)]. Foliar application of 24‐epibrassinolide (EBR) accelerated recovery from photoinhibition of PSII but not of PSI. EBR also significantly increased CO2 assimilation, activity of Calvin cycle enzymes and electron flux to carbon reduction [Je(PCR)], with a concomitant decrease in Ja(O2‐dependent); meanwhile EBR increased the activity of enzymes in AsA‐GSH cycle and cellular redox states. However, the positive effect of EBR on plant recovery was observed only at HL, but not LL. These results indicate that BR accelerates the recovery of photosynthetic apparatus at HL by activation of enzymes in Calvin cycle and increasing the antioxidant capacity, which in turn mitigate the photooxidative stress and the inhibition of plant growth during the recovery.  相似文献   

6.
The effect of Ca on senescence was followed in detached cucumber (Cucumis sativus L.) cotyledons floating on various solutions in the dark. Compared with those in water, cotyledons in 10−4 molar CaCl2 exhibited reduced chlorophyll loss and H2O2 production, reduced and delayed ethylene production, and did not undergo a burst in CO2 production. In contrast, Mg had little effect on cotyledon senescence, whereas K stimulated chlorophyll loss but did not increase H2O2 accumulation of ethylene and CO2 production. This reduction in the rate of senescence by Ca could also be achieved by increasing the endogenous levels of Ca in the cotyledons before excision, although the reduction was less than that with Ca in the external solution. The addition of H2O2 to the solutions on which cotyledons were floated stimulated chlorophyll breakdown, but effects on ethylene and CO2 were not consistent.  相似文献   

7.
The influence of pH upon the O2 inhibition of 14CO2 photoassimilation (Warburg effect) was examined in intact spinach (Spinacia oleracea) chloroplasts. With conditions which favored the Warburg effect, i.e. rate-limiting CO2 and 100% O2, O2 inhibition was greater at pH 8.4 to 8.5 than at pH 7.5 to 7.8. At pH 8.5, as compared with 7.8, there was an enhanced 14C-labeling of glycolate, and a decrease of isotope in some phosphorylated Calvin cycle intermediates, particularly triose-phosphate. The 14C-labeling of starch was also more inhibited by O2 at higher pH. The enhanced synthesis of glycolate during 14CO2 assimilation at higher pH resulted in a diminution in the level of phosphorylated intermediates of the Calvin cycle, and this was apparently a causal factor of the increased severity of the Warburg effect.  相似文献   

8.
Cornic G  Woo KC  Osmond CB 《Plant physiology》1982,70(5):1310-1315
Intact spinach (Spinacia oleracea L.) chloroplasts, when pre-illuminated at 4 millimoles quanta per square meter per second for 8 minutes in a CO2-free buffer at 21% O2, showed a decrease (30-70%) in CO2-dependent O2 evolution and 14CO2 uptake. This photoinhibition was observed only when the O2 concentration and the quantum fluence rate were higher than 4% and 1 millimole per square meter per second, respectively. There was only a small decrease in the extent of photoinhibition when the CO2 concentration was increased from 0 to 25 micromolar during the treatment, but photoinhibition was abolished when the CO2 concentration was increased to 30 micromolar. Addition of small quantities of P-glycerate (40-200 micromolar) or glycerate (160 micromolar) was found to prevent photoinhibition. Other intermediates of the Calvin cycle (fructose-6-P, fructose-1,6-P, ribose-5-P, ribulose-5-P) also prevented photoinhibition to various extents. Oxaloacetate was not effective in preventing photoinhibition in these chloroplasts. The amount of O2 evolved during treatments with 3-P-glycerate or glycerate was no more than 65% of that measured in the presence of low CO2 concentrations (9-12 micromolar) which did not prevent photoinhibition. In all cases, the extent to which photoinhibition was prevented by these metabolites was not correlated to the amount of O2 evolved during the photoinhibitory treatment. It is concluded that in these chloroplasts the prevention of the O2-dependent photoinhibition of light saturated CO2 fixation capacity is not linked to the dissipation of excitation energy via the photosynthetic electron transport nor to ATP utilization. The requirement of O2 for photoinhibition of CO2 fixation capacity in isolated chloroplasts may be explained by an effect of O2 in allowing metabolic depletion of Calvin cycle intermediates.  相似文献   

9.
Suspensions of freshly lysed spinach chloroplasts, in which ribulose bisphosphate carboxylase displays an in vivo Km [CO], exhibited a ribulose bisphosphate-dependent uptake of oxygen. The kinetic properties of this oxygenase activity were examined at air levels of CO2 (10 μm) and O2 (240 μm). The pH optimum was 8.6–8.8 and the KM [ribulose bisphosphate] was 45 μm. At 240 μm O2, the oxygenase activity is inhibited one-half by 25 μm CO2. The apparent Km(O2) is large, somewhere between 1 and 2 atm. The phosphoglycolate phosphatase activity of the chloroplasts was in great excess, suggesting that phosphoglycolate formed by the oxygenase would be quickly hydrolyzed to glycolate for possible metabolism by photorespiration.A comparison of the pH dependence of both the carboxylase and oxygenase activities at air levels of CO2 and O2 suggests that the pH of the chloroplast stroma could regulate their relative activities and that the oxygenase activity is sufficient to account for glycolate production during photosynthesis. It is predicted that at pH 7.8, about 40% of the carbon assimilated by the Calvin cycle would go through glycolate.  相似文献   

10.
11.
Purple nonsulfur bacteria grow photoheterotrophically by using light for energy and organic compounds for carbon and electrons. Disrupting the activity of the CO2-fixing Calvin cycle enzyme, ribulose 1,5-bisphosphate carboxylase (RubisCO), prevents photoheterotrophic growth unless an electron acceptor is provided or if cells can dispose of electrons as H2. Such observations led to the long-standing model wherein the Calvin cycle is necessary during photoheterotrophic growth to maintain a pool of oxidized electron carriers. This model was recently challenged with an alternative model wherein disrupting RubisCO activity prevents photoheterotrophic growth due to the accumulation of toxic ribulose-1,5-bisphosphate (RuBP) (D. Wang, Y. Zhang, E. L. Pohlmann, J. Li, and G. P. Roberts, J. Bacteriol. 193:3293-3303, 2011, http://dx.doi.org/10.1128/JB.00265-11). Here, we confirm that RuBP accumulation can impede the growth of Rhodospirillum rubrum (Rs. rubrum) and Rhodopseudomonas palustris (Rp. palustris) RubisCO-deficient (ΔRubisCO) mutants under conditions where electron carrier oxidation is coupled to H2 production. However, we also demonstrate that Rs. rubrum and Rp. palustris Calvin cycle phosphoribulokinase mutants that cannot produce RuBP cannot grow photoheterotrophically on succinate unless an electron acceptor is provided or H2 production is permitted. Thus, the Calvin cycle is still needed to oxidize electron carriers even in the absence of toxic RuBP. Surprisingly, Calvin cycle mutants of Rs. rubrum, but not of Rp. palustris, grew photoheterotrophically on malate without electron acceptors or H2 production. The mechanism by which Rs. rubrum grows under these conditions remains to be elucidated.  相似文献   

12.
Glycolate was excreted from the 5% CO2-grown cells of Euglena gracilis Z when placed in an atmosphere of 100% O2 under illumination at 20,000 lux. The amount of excreted glycolate reached 30% of the dry weight of the cells during incubation for 12 hours. The content of paramylon, the reserve polysaccharide of E. gracilis, was decreased during the glycolate excretion, and of the depleted paramylon carbon, two-thirds was excreted to the outside of cells and the remaining metabolized to other compounds, both as glycolate. The paramylon carbon entered Calvin cycle probably as triose phosphate or 3-phosphoglycerate, but not as CO2 after the complete oxidation through the tricarboxylic acid cycle. The glycolate pathway was partially operative and the activity of the pathway was much less than the rate of the synthesis of glycolate in the cells under 100% O2 and 20,000 lux; this led the cells to excrete glycolate outside the cells. Exogenous glycolate was metabolized only to CO2 but not to glycine and serine. The physiologic role of the glycolate metabolism and excretion under such conditions is discussed.  相似文献   

13.
Phaseolus vulgaris L. leaves were subjected to various light, CO2, and O2 levels and abscisic acid, then given a 10 minute pulse of 14CO2 followed by a 5 minute chase with unlabeled CO2. After the chase period, very little label remained in the ionic fractions (presumed to be mostly carbon reduction and carbon oxidation cycle intermediates and amino acids) except at low CO2 partial pressure. Most label was found in the neutral, alcohol soluble fraction (presumed sucrose) or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate (slope = 0.35). Starch formation increased linearly with assimilation rate (slope = 0.56) but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO2 in combination with low O2 (thought to disrupt control of carbon metabolism) caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO2 assimilation, with sucrose the preferred product at very low assimilation rates.  相似文献   

14.
Activities of key enzymes of the Calvin cycle and C4 metabolism, rates of CO2 fixation, and the initial products of photosynthetic 14CO2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv `Toria.' Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14CO2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO2 during light. However, respiratory losses were very high during the dark period.  相似文献   

15.
The chloroplast fraction isolated from Acetabularia mediterranie was exposed to 14CO2 as NaH14CO3 in light and darkness, and soluble radioactive compounds were analyzed at frequent intervals. The behavior of Calvin cycle intermediates indicates that this cycle was responsible for much of the carbon fixation in the chloroplasts. However, a substantial part of recently fixed carbon was metabolized via glycolic and glyceric acids. Possible pathways for their metabolism are discussed. Some carboxylation of C3 acids was suggested by the behavior of phosphoenolpyruvate and malate. A number of amino acids were formed. Small amounts of such compounds as citrate, succinate, and fumarate not usually associated with photosynthesis might have been derived from a low level of mitochondrial contamination. About one-third of the carbon fixed in light was present in acid-labile insoluble compounds other than polysaccharides or proteins. Dark fixation of CO2 was very small compared with photosynthesis.  相似文献   

16.
Immediately following exposure to light, a postillumination burst of CO2 has been detected in Crassulacean acid metabolism plants. A detailed study with pineapple (Ananas comosus) leaves indicates that the postillumination burst changes its amplitude and kinetics during the course of a day. In air, the postillumination burst in pineapple leaves generally is exhibited as two peaks. The postillumination burst is sensitive to atmospheric CO2 and O2 concentrations as well as to the light intensity under which plants are grown. We propose that the CO2 released in the first postillumination burst peak is indicative of photorespiration since it is sensitive to either O2 or CO2 concentration while the second CO2 evolution peak is likely due to decarboxylation of organic acids involved in Crassulacean acid metabolism.  相似文献   

17.
Oxygen exchange in leaves in the light   总被引:30,自引:20,他引:10       下载免费PDF全文
Photosynthetic O2 production and photorespiratory O2 uptake were measured using isotopic techniques, in the C3 species Hirschfeldia incana Lowe., Helianthus annuus L., and Phaseolus vulgaris L. At high CO2 and normal O2, O2 production increased linearly with light intensity. At low O2 or low CO2, O2 production was suppressed, indicating that increased concentrations of both O2 and CO2 can stimulate O2 production. At the CO2 compensation point, O2 uptake equaled O2 production over a wide range of O2 concentrations. O2 uptake increased with light intensity and O2 concentration. At low light intensities, O2 uptake was suppressed by increased CO2 concentrations so that O2 uptake at 1,000 microliters per liter CO2 was 28 to 35% of the uptake at the CO2 compensation point. At high light intensities, O2 uptake was stimulated by low concentrations of CO2 and suppressed by higher concentrations of CO2. O2 uptake at high light intensity and 1000 microliters per liter CO2 was 75% or more of the rate of O2 uptake at the compensation point. The response of O2 uptake to light intensity extrapolated to zero in darkness, suggesting that O2 uptake via dark respiration may be suppressed in the light. The response of O2 uptake to O2 concentration saturated at about 30% O2 in high light and at a lower O2 concentration in low light. O2 uptake was also observed with the C4 plant Amaranthus edulis; the rate of uptake at the CO2 compensation point was 20% of that observed at the same light intensity with the C3 species, and this rate was not influenced by the CO2 concentration. The results are discussed and interpreted in terms of the ribulose-1,5-bisphosphate oxygenase reaction, the associated metabolism of the photorespiratory pathway, and direct photosynthetic reduction of O2.  相似文献   

18.
Photosynthetic activities of bundle sheath cell strands isolated from several C4 pathway species were examined. These included species that decarboxylate C4 acids via either NADP-malic enzyme (Zea mays, NADP-malic enzyme-type), NAD-malic enzyme (Atriplex spongiosa and Panicum miliaceum, NAD-malic enzyme-type) or phosphoenolpyruvate carboxykinase (Chloris gayana and Panicum maximum, phosphoenolpyruvate carboxykinase-type). Preparations from each of these species fixed 14CO2 at rates ranging between 1.2 and 3.5 μmol min?1 mg?1 of chlorophyll, with more than 90% of the 14C being assimilated into Calvin cycle intermediates. With added HCO3? the rate of light-dependent O2 evolution ranged between 2 and 4 μmol min?1 mg?1 of chlorophyll for cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species but with Z. mays cells there was no O2 evolution detectable. Most of the 14CO2 fixed by Z. mays cells provided with H14CO3? plus ribose 5-phosphate accumulated in the C-1 of 3-phosphoglycerate. However, 3-phosphoglycerate reduction was increased several fold when malate was also provided. Cells from all species rapidly decarboxylated C4 acids under appropriate conditions, and the CO2 released from the C-4 carboxyl was reassimilated via the Calvin cycle. Malate decarboxylation by Z. mays cells was dependent upon light and an endogenous or exogenous source of 3-phosphoglycerate. Bundle sheath cells of NAD-malic enzyme-type species rapidly decarboxylated [14C]malate when aspartate and 2-oxoglutarate were also provided, and [14C]aspartate was decarboxylated at similar rates when 2-oxoglutarate was added. Cells from phosphoenolpyruvate carboxykinase-type species decarboxylated [14C]aspartate when 2-oxoglutarate was added and they also catalyzed a slower decarboxylation of malate. Cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species evolved O2 in the light when C4 acids were added. These results are discussed in relation to proposed mechanisms for photosynthetic metabolism in the bundle sheath cells of species utilizing C4 pathway photosynthesis.  相似文献   

19.
Photosynthetic carbon metabolism of isolated corn chloroplasts   总被引:16,自引:15,他引:1       下载免费PDF全文
Chloroplasts have been isolated from 4- to 6-day-old corn (Zea mays) leaves capable of assimilating 45 micromoles CO2 per milligram chlorophyll per hour. The effects of various factors such as inorganic phosphate, reducing agents, inhibitors, intermediates of the photosynthetic carbon reduction cycle, organic acids, and oxygen on the photosynthetic rate and on the distribution of 14C within the products by these chloroplasts were determined. The photosynthetic carbon metabolism of the corn plastids appeared to be similar to that already observed in spinach and pea chloroplasts. It was concluded that the corn plastids can fix CO2 at meaningful rates via the photosynthetic carbon reduction cycle of Calvin without the operation of a cycle involving the C-4 compounds, malate and aspartate.  相似文献   

20.
The hypothesis that ambient CO2 levels determine the end-products of energy metabolism excreted by Hymenolepis diminuta was tested by incubating the parasite in a range of CO2 concentrations and measuring internal concentrations of adenine nucleotides and the excretion of organic acids. The strain of H. diminuta used was found to excrete mainly lactic acid and acetic acid. Succinic acid production was generally less than 5–10% of the total. At high CO2 concentrations, the rate of excretion of lactic acid decreased while that of succinic acid increased, which conforms with the hypothesis. Acetic acid excretion did not vary significantly over the range of CO2 concentrations used. Other results did not support the hypothesis. High CO2 levels reduced the total amounts of acids excreted and the rate of succinic acid excretion was so small as to be ineffective in preventing the accumulation of H+ ions. When present in the incubation medium, succinic acid was taken up by H. diminuta. Lactic and acetic acid excretion was always sufficient to limit the accumulation of H+ ions. The conditions of incubation were shown not to be responsible for the low rates of succinic acid excreted. Incubation conditions and metabolic end-products were found to affect the rates of excretion of organic acids. There is thus a need, in work of this nature, to regulate and specify experimental conditions and to stipulate the strain of parasite used. The hypothesis was rejected and it was suggested that the energy metabolism of parasitic helminths is adapted to fluctuating O2 and CO2 tensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号