首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circular dichroism, infrared and proton magnetic resonance spectroscopy as well as microcalorimetry methods were used to investigate the intact proteins L7/L12 in solution and their different derivatives (L7 with oxidized residues of methionine, fragments 27--120, 1--73 and 74--120)- On the basis of the data obtained the following conclusions have been drawn: (a) there is no beta structure in the protein L7, (B) the N-terminal region of L7 forms a long alpha helix (c) the Phe-30 residue within the N-terminal region of L7 takes part in the dimerization, (d) the C-terminal of L7 is globular and (e) the Phe-54 residue is included in the hydrophobic core of the globular C-terminal region.  相似文献   

2.
1. Polyclonal antibodies (pAb 1-73 and pAb 26-120) have been raised against both an N-terminal fragment of Escherichia coli ribosomal protein L7/L12 (amino acids 1-73), and a fragment lacking part of the N-terminal domain (amino acids 26-120). 2. Only pAb 26-120 inhibited release-factor-dependent in vitro termination functions on the ribosome. This antibody binds over the length of the stalk of the large subunit of the ribosome as determined by immune electron microscopy, thereby not distinguishing between the C-terminal domains of the two L7/L12 dimers, those in the stalk or those in the body of the subunit. 3. A monoclonal antibody against an epitope of the C-terminal two thirds of the protein (mAb 74-120), which binds both to the distal tip of the stalk as well as to a region at its base, reflecting the positions of the two dimers is strongly inhibitory of release factor function. 4. A monoclonal antibody against an epitope of the N-terminal fragment of L7/L12 (mAb 1-73), previously shown to remove the dimer of L7/L12 in the 50S subunit stalk but still bind to the body of the particle, partially inhibited release-factor-mediated events. 5. The mAb 74-120 inhibited in vitro termination with a similar profile when the stalk dimer of L7/L12 was removed with mAb 1-73, indicating that the body L7/L12 dimer, and in particular its C-terminal domains, are important for release factor/ribosome interaction. 6. The two release factors have subtle differences in their binding domains with respect to L7/L12.  相似文献   

3.
Five-residue-long deletions centered on Ala63, Ala75, and Glu118 of ribosomal protein L7/L12 gave low mutant yields (5% or less) when the mutant genes were cloned in phage M13mp18 and controlled by the L10 promotor. Deletions of Glu118-Lys120 or Lys120 (the COOH-terminus of L7/L12) gave higher mutant yields, up to 50% with L7/L12 delta Lys120. L7/L12 delta Lys120 was not preferentially found in the S100 and not preferentially removed by LiCl washing, but was preferentially extracted from 70S ribosomes in the presence of 28-35% ethanol in 0.25-0.5 M NH4Cl. It follows that delta Lys120 destabilizes the ribosome-binding domain of ribosomal protein L7/L12 in an ethanol-containing solvent, which raises the question whether Lys120 is part of the ribosome-binding domain of L7/L12 during some step of protein synthesis or whether it is essential to preserve the conformation of the physiological ribosome-binding domain under structurally stressful conditions.  相似文献   

4.
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12 were prepared and characterized as reported previously (Sommer, A., Etchison, J.R., Gavino, G., Zecherle, N., Casiano, C., and Traud, R.R. (1985) J. Biol. Chem. 260, 6522-6527). Both antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor G to the ribosome at mole ratios over ribosomes of 4:1 or less. One epitope was shown to be within residues 1-73 (Ab 1-73) and the other within 74-120 (Ab 74-120). Incubation of 50 S ribosomal subunits or 70 S ribosomes with Ab 1-73, but not with Ab 74-120, leads to a partial loss of L7/L12 from the particle with no loss of any other protein. The experiment was repeated with ribosomes reconstituted with pure radioactive L7/L12 of determined specific activity in order to quantify the L7/L12 in the antibody-treated particle. The protein-deficient core particles isolated by sucrose gradient centrifugation after incubation with Ab 1-73 were found to contain, on average, two copies of L7/L12 and one Ab 1-73. The constancy of this stoichiometry in many experiments and the demonstration of Ab 1-73 on all particles indicate the presence of a homogeneous population of ribosomes, each with only one of the two L7/L12 dimers originally present. The results show a difference in the interactions of the two dimers with the ribosome and present a means of preparing ribosomes with one dimer in a specific binding site. The accompanying paper (Olson, H.M., Sommer, A., Tewari, D. S., Traut, R.R., and Glitz, D.G. (1986) J. Biol. Chem. 261, 6924-6932) shows by immune electron microscopy the location of the two antibody-binding sites and the effect of Ab 1-73 on structure.  相似文献   

5.
B Nag  D S Tewari  R R Traut 《Biochemistry》1987,26(2):461-465
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12, one within residues 74-120 and the other within residues 1-73, shown before to inhibit the binding of EF-G, have been tested for their effects on the binding to E. coli ribosomes of EF-Tu-aminoacyl-tRNA-GTP ternary complex and on peptidyl transferase activity. Both antibodies inhibit the binding of ternary complex and EF-Tu-dependent GTPase but have no inhibitory effect on peptidyl transferase activity. The inhibition of binding of both elongation factors is indicative of overlapping binding sites for EF-G and EF-Tu. The inhibition by both antibodies implies the contribution of both domains of L7/L12 to this binding site. This implies the location of one or more of the C-terminal domains of L7/L12 on the body of the 50S subunit. The absence of any inhibition of peptidyl transferase activity shows distinct separation of this site from the factor binding site.  相似文献   

6.
Based on the (1)H-(15)N NMR spectroscopy data, the three-dimensional structure and internal dynamic properties of ribosomal protein L7 from Escherichia coli were derived. The structure of L7 dimer in solution can be described as a set of three distinct domains, tumbling rather independently and linked via flexible hinge regions. The dimeric N-terminal domain (residues 1-32) consists of two antiparallel alpha-alpha-hairpins forming a symmetrical four-helical bundle, whereas the two identical C-terminal domains (residues 52-120) adopt a compact alpha/beta-fold. There is an indirect evidence of the existence of transitory helical structures at least in the first part (residues 33-43) of the hinge region. Combining structural data for the ribosomal protein L7/L12 from NMR spectroscopy and x-ray crystallography, it was suggested that its hinge region acts as a molecular switch, initiating "ratchet-like" motions of the L7/L12 stalk with respect to the ribosomal surface in response to elongation factor binding and GTP hydrolysis. This hypothesis allows an explanation of events observed during the translation cycle and provides useful insights into the role of protein L7/L12 in the functioning of the ribosome.  相似文献   

7.
本研究对羊布鲁氏菌L7/L12蛋白进行了表达和纯化。首先从布鲁氏菌M5基因组中克隆L7/L12目的基因片段,连接至pMD-19T载体,转化入E.coli DH5α感受态细胞,PCR鉴定及测序鉴定正确后对其进行双酶切,构建重组质粒pGEX-6P-1-L7/L12并利用E.coli BL21(DE3)进行诱导表达。羊布鲁氏菌L7/L12基因片段大小为375 bp。SDS-PAGE检测蛋白大小为13 kD,与预测值相符。Western blotting方法检测其免疫学特性。实验结果表明,成功构建了pGEX-6P-1-L7/L12原核表达载体,并在大肠杆菌中成功表达了L7/L12重组蛋白,Western blotting法检测其具有免疫反应。本实验为下一步研究蛋白功能及布鲁氏菌新型疫苗的研制提供了实验基础。  相似文献   

8.
A Zantema  J A Maassen  J Kriek  W M?ller 《Biochemistry》1982,21(13):3069-3076
So that the topographic and dynamic properties of the L7/L12--L10 complex in the 50S ribosome of Escherichia coli could be studied, methods and reagents were developed in order to introduce fluorescent groups at specific positions of these proteins. In the case of L7/L12, this was done by attaching an aldehyde group to Lys-51 of the protein by using 4-(4-formylphenoxy)butyrimidate or by converting the amino terminus of L12 into an aldehyde group by periodate oxidation. Subsequent reaction of the aldehyde groups with newly developed hydrazine derivatives of fluorescein and coumarin resulted in specifically labeled L7/L12 derivatives. L10 was modified at the single cysteine residue with N-[7-(dimethylamino)-4-methylcoumarinyl]maleimide. The fluorescent proteins L10 and L7/L12 could be reconstituted into 50S ribosomes. The resulting specifically labeled 50S ribosomes show 25--100% activity in elongation factor G dependent GTPase as well as in polyphenylalanine synthesis. The fluorescent properties of the labeled 50S ribosomes show that these fluorescent derivatives are suitable for energy transfer studies.  相似文献   

9.
A number of different monomer and dimer derivatives of protein L7/L12 has been studied in EF-G-dependent reactions on the ribosome. It has been shown that only dimer derivatives of protein L7/L12 are able to interact with the ribosome. This means that it is the dimer forms of protein L7/L12 that are present in the functionally active ribosome. It is likely that the N-terminal sequence of protein L7/L12 is responsible for dimerization of the protein in solution and at the same time contributes mainly to the interaction of the protein L7/L12 dimer with the ribosome. The results obtained suggest that there are four copies of protein L7/L12 in the translating ribosome.  相似文献   

10.
We have used modification of specific amino acid residues in the E. coli ribosomal protein L10 as a tool to study its interactions with another ribosomal protein, L7/L12, as well as with ribosomal core particles and with 23S RNA. The ribosome and RNA binding capability of L10 was found to be inhibited by modification of one more of its arginine residues. This treatment does not affect the ability of L10 to bind four molecules of L7/L12 in a L7/L12-L10 complex. Our results support the view that L10's role in promoting the L7/L12-ribosome association is due primarily to its ability to bind to both 23S RNA and L7/L12 simultaneously.  相似文献   

11.
The E. coli ribosomal proteins L12 and its N-acetylated form L7 were cleaved into an N-terminal and C-terminal fragment of roughly comparable size. The selective cleavage at the lone arginine residue was accomplished by trypsin treatment of the citraconylated proteins, followed by removal of the citraconyl moieties. These fragments, both separately and in combination, were incapable of reconstituting elongation factor G (EF-G) dependent GTPase of CsCl ribosomal cores supplemented with L10. However, incubation of cores containing L10 with the N-terminal fragment prevented the reconstitution of GTPase activity by intact L7/L12. No inhibition was observed when CsCl cores lacking L10 were incubated with the N-terminal fragment followed by addition of a preincubated mixture of L7/L12 and L10. The results indicate that the N-terminal part of L7/L12 is responsible for its ability to bind to 50S ribosomes and that L7/L12 together with L10 form a protein cluster on the ribosome.  相似文献   

12.
Griaznova O  Traut RR 《Biochemistry》2000,39(14):4075-4081
Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles. Deletion of 20 or 33 amino acids led to the inability of the proteins to bind both dimers of protein L7/L12. The L10 variant with deletion of 10 amino acids bound one L7/L12 dimer in solution and when reconstituted into ribosomes promoted the binding of only one L7/L12 dimer to the ribosome. The ribosomes that contained a single L7/L12 dimer were homogeneous by gel electrophoresis where they had a mobility between wild-type 50S subunits and cores completely lacking L7/L12. The single-dimer ribosomal particles supported elongation factor G dependent GTP hydrolysis and protein synthesis in vitro with the same activity as that of two-dimer particles. The results suggest that amino acids 145-154 in protein L10 determine the binding site ("internal-site") for one L7/L12 dimer (the one reported here), and residues 155-164 ("C-terminal-site") are involved in the interaction with the second L7/L12 dimer. Homogeneous ribosomal particles containing a single L7/L12 dimer in each of the distinct sites present an ideal system for studying the location, conformation, dynamics, and function of each of the dimers individually.  相似文献   

13.
The amino acid sequences of mutationally altered ribosomal protein L7/L12 from four different rplL mutants of Escherichia coli were determined and correlated with some features of the mutant ribosomes. Two of the rplL mutations are deletions around position 40, which give rise to a shortened hinge region between the two domains of L7/L12. The other two mutants harbor point mutations at position 74 (Gly----Asp) or at position 82 (Glu----Lys), which are in or close to an evolutionarily conserved sequence in the C-terminal domain. The two latter mutations are associated with decreased rates of growth and translational elongation. All four mutants show increased nonsense codon read-through in vivo. Ribosomes from one of the deletion mutants show clearly increased missense error rates in vitro.  相似文献   

14.
Abstract DNA sequencing of the gene encoding a Brucella melitensis 12-kDa protein revealed that this protein was the ribosomal protein L7/L12. The B. melitensis L7/L12 DNA sequence was identical to that of the corresponding B. abortus gene, showing the near identity of these two organisms. When comparing the sequence of this protein to that of other organisms some domains were highly conserved, especially the C-terminus, which contrasted with the lack of conservation of the sequences at the N-terminus. The finding that the ribosomal protein L7/L12 of Brucella is an immunodominant antigen provides a new rationale to explain the activity of ribosomal vaccines.  相似文献   

15.
Tryptic digestion of reductively methylated protein L7/L12 yields a large tryptic fragment, which comprises amino acids 1-59. At the most, two molecules of this fragment can bind to a 50-S ribosomal particle, deprived of protein L7/L12. Besides, binding of each single 1-59 fragment competes with binding of one dimeric L7/L12 molecule. Molecular weight studies on the fragment reveal a monomeric structure. Digestion of the 1-59 fragment with carboxypeptidase Y leads to the formation of a 1-55 fragment. The binding characteristics of the latter fragment are similar to those of the 1-59 fragment. The results suggest that a monomeric stretch of L7/L12, comprising the first 55 amino acids, is sufficient for attaching L7/L12 to the ribosome.  相似文献   

16.
Ribosomal protein L7/L12 from Escherichia coli was modified specifically at Lys-51 with 4-(6-formyl-3-azido-phenoxy)butyrimidate. Reconstitution of ribosomal cores, lacking L7/L12, with imidate-modified L7/L12 resulted in back formation of 50S particles which were fully active in elongation-factor-dependent processes. By use of the formylazidophenoxy moiety as hapten, the position of Lys-51 of L7/L12 on the 50S ribosome was determined by immune electron microscopy. The results show that an L7/L12 dimer is present in the L7/L12 stalk in such a way that Lys-51 is located at the far cytoplasmic end of the stalk. The experimental data are discussed in relation to a proposed model for the L7/L12 dimer.  相似文献   

17.
Summary Ribosomal proteins L4, L5, L20 and L25 have been localized on the surface of the 50S ribosomal subunit of Escherichia coli by immuno-electron microscopy. The two 5S RNA binding proteins L5 and L25 were both located at the central protuberance extending towards its base, at the interface side of the 50S particle. L5 was localized on the side of the central protuberance that faces the L1 protuberance, whereas L25 was localized on the side that faces the L7/L12 stalk. Proteins L4 and L20 were both located at the back of the 50S subunit; L4 was located in the vicinity of proteins L23 and L29, and protein L20 was localized between proteins L17 and L10 and is thus located below the origin of the L7/L12 stalk.  相似文献   

18.
The Pseudomonas putida rpl L gene coding for ribosomal protein L7/L12 was cloned and sequenced. Although Asp55 residue in L7/L12 was previously shown to be conservative in ten different organisms, the Pseudomonas putida L7/L12 proved to contain Asn55, thus showing that Asp55 is not invariant.  相似文献   

19.
The Escherichia coli ribosomal protein L7/L12 is central to the translocation step of translation, and it is known to be flexible under some conditions. The assignment of electron density to L7/L12 was not possible in the recent 2.4 A resolution x-ray crystallographic structure (Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) Science 289, 905-920). We have localized the two dimers of L7/L12 within the structure of the 70 S ribosome using two reconstitution approaches together with cryo-electron microscopy and single particle reconstruction. First, the structures were determined for ribosomal cores from which protein L7/L12 had been removed by treatment with NH(4)Cl and ethanol and for reconstituted ribosomes in which purified L7/L12 had been restored to core particles. Difference mapping revealed that the reconstituted ribosomes had additional density within the L7/L12 shoulder next to protein L11. Second, ribosomes were reconstituted using an L7/L12 variant in which a single cysteine at position 89 in the C-terminal domain was modified with Nanogold (Nanoprobes, Inc.), a 14 A gold derivative. The reconstruction from cryo-electron microscopy images and difference mapping placed the gold at four interfacial positions. The finding of multiple sites for the C-terminal domain of L7/L12 suggests that the conformation of this protein may change during the steps of elongation and translocation.  相似文献   

20.
In Escherichia coli the genes encoding ribosomal proteins L10 and L7/12, rplJ and rplL, respectively, are cotranscribed and subject to translational coupling. Synthesis of both proteins is coordinately regulated at the translational level by binding of L10 or a complex of L10 and L7/L12 to a single target in the mRNA leader region upstream of rplJ. Unexpectedly, small deletions that inactivated the ribosome-binding site of the rplL gene carried on multicopy plasmids exerted a negative effect on expression of the upstream rplJ gene. This effect could be overcome by overproduction of L7/L12 in trans from another plasmid. This apparent stimulation resulted from stabilization of the overproduced L10 protein by L7/L12, presumably because free L10, in contrast to L10 complexed with L7/L12, is subject to rapid proteolytic decay. The contribution of this decay mechanism to the regulation of the rplJL operon is evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号