首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A mouse liver plasma-membrane preparation was solubilized in an N-dodecylsarcosinate-Tris buffer, pH7.8, and the proteins and glycoproteins were separated by a rate-zonal centrifugation in sucrose-detergent gradients. 2. A peak of alkaline phosphodiesterase activity which sedimented ahead of the 5'-nucleotidase peak was associated with a major glycoprotein component of the plasma membrane. 3. The phosphodiesterase activity was then purified further by gel filtration and gave a single glycoprotein band after electrophoresis on polyacrylamide gels. The apparent molecular weight of the polypeptide at pH7.4 and 8.9 was 128000-130000 and was independent of the polyacrylamide concentration. Electrophoresis in gels containing deoxycholate showed that the protein band was coincident with phosphodiesterase activity. 4. After two-dimensional immunoelectrophoresis, with agarose containing rabbit anti-(mouse plasma-membrane) antiserum as second dimension, the enzyme showed one component which was also coincident with the phosphodiesterase activity. 5. An amino acid composition of the glycoprotein is presented. Carbohydrate analysis indicated the presence of glucosamine, neutral sugars and sialic acid. 6. The enzyme was also a nucleotide pyrophosphatase, as shown by a similar enrichment during purification of activity towards ATP, NAD(+), UDP-galactose and UDP-N-acetylglucosamine. The phosphodiesterase activity, measured by using dTMP p-nitrophenyl ester as substrate, was competitively inhibited by nucleotide pyrophosphate substrates. The enzyme showed little or no activity towards RNA, cyclic AMP, AMP, ADP and glycerylphosphorylcholine. 7. The significance of this enzyme activity in the plasma membrane is discussed.  相似文献   

2.
1. Incubation of Schistosoma mansoni for 5 min in a phosphate-buffered medium, pH 7.4, released tegumental material containing the following phosphohydrolase activities: alkaline phosphatase, 5'-nucleotidase, glycerol-2-phosphatase, glucose 6-phosphatase, phosphodiesterase and ATPase. 2. Maximum activity of these enzymes was measured at pH 9.5; however, the phosphodiesterase and ATPase activities were also appreciable at pH 7.0. 3. Solubilization of the released tegumental material in 1% Triton X-100 followed by gel filtration distinguished three peaks of enzyme activity: an ATPase (mol.wt. greater than 1000 000), a phosphodiesterase (mol.wt. 1 000 000) and an alkaline phosphomonoesterase with broad specificity (mol.wt. 232 000). 4. The ATPase activity was highly activated by 10 mM-Mg2+ or 1 mM-Ca2+ and was inhibited by chelating agents. Ouabain, Na+ and K+ had little effect on enzyme activity, whereas activity was increased by 50% in the presence of calmodulin. The phosphodiesterase activity was highest in the presence of 100 mM-Na+ or -K+, and 10 mM-Mg2+ or -Ca2+. Alkaline phosphatase activity was also stimulated by 100 mM-Na+ or -K+, and 10 mM-Mg2+; however Ca2+ inhibited at greater than 1 mM. 5. Surface iodination of parasites followed by detergent solubilization and gel filtration of the released tegumental membranes indicated that these enzymes were not accessible. A major surface component, apparent mol.wt. 80 000, was iodinated. 6. Rabbit anti-(mouse liver 5'-nucleotidase) antibodies did not inhibit the phosphohydrolase activities. However, an immunoglobulin G fraction from sera of mice chronically infected with S. mansoni partially inhibited alkaline phosphatase activity, but was without effect on the phosphodiesterase and ATPase activities. 7. The location of the enzymes in the double membrane of the tegument and their significance in host-parasite interactions is discussed.  相似文献   

3.
Antiserum against mouse liver plasma membranes was used to investigate the properties and distribution of the surface membrane enzyme 5′ nucleotidase.The antiserum inhibited 5′ nucleotidase but had no effect on alkaline phosphodiesterase, nucleotide pyrophosphatase, or insulin-binding activity.5′ Nucleotidase was purified from mouse liver plasma membranes and the purified enzyme was shown to be inhibited by the antiserum. The membrane-bound and the purified enzyme were both inhibited in a noncompetitive manner.The reaction of the antiserum with 5′ nucleotidase activity of mouse liver plasma membrane “light” and “heavy” subfractions, and of rat liver and pig lymphocyte surface-membrane fractions was investigated. In each case the enzyme was inhibited by the antiserum.Since a protein must be partially exposed on the membrane surface in order to react with its antibody, the results are discussed in terms of the disposition of 5′ nucleotidase within the membrane.  相似文献   

4.
Albumin associated with purified pig lymphocyte plasma membrane.   总被引:5,自引:2,他引:3       下载免费PDF全文
Plasma-membrane preparations purified from pig lymphocytes contained a major polypeptide component of mol.wt. about 68 000. This component was identified as pig albumin by the following comparisons with authentic pig serum albumin: (a) co-migration when analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under reducing and non-reducing conditions; (b) identical isoelectric points; (c) similar "fingerprints" of arginine-containing tryptic peptides; (d) reactivity with anti-(pig albumin) serum. The albumin was bound tightly to the plasma membrane. Biosynthetic labelling of pig lymphocytes under a variety of conditions failed to provide evidence that albumin was synthesized by lymphocytes, suggesting that the plasma-membrane-associated albumin was of extraneous origin. Radiolabelled pig serum albumin, however, failed to bind to the plasma-membrane fraction when added before cell disruption. Although lymphocyte plasma membrane preparations from other species possessed a polypeptide of about 68 000 mol.wt., this was judged not to be albumin on the basis of electrophoretic mobility under non-reducing conditions; also, no polypeptide was precipitated by anti-albumin sera. It is concluded that pig lymphocyte plasma-membrane preparations possess albumin which, although firmly attached, was probably of extraneous origin. This association appeared not to be common to lymphocytes from other species.  相似文献   

5.
1. Six rat liver plasma-membrane subfractions of different density and morphological, enzymic and chemical properties were prepared from homogenates by a combination of differential, rate-zonal and density-gradient centrifugation. They consisted of three vesicular 'light' subfractions of density 1.12-1.13 and three 'heavy' subfractions of density 1.16-1.18 containing membrane strips and intercellular junctions. 2. All six subfractions contained a basal adenylate cyclase activity. One of the 'light' subfractions that showed the highest glucagon-stimulated adenylate cyclase activity was identified as deriving form the blood-sinusoidal face of the hepatocyte. This subfraction, unlike the others, was contaminated by Golgi components, as indicated by its morphological properties and the presence of galactosyl- and sialyl-transferase activities. 3. All the six subfractions showed high activities of the following plasma-membrane marker enzymes: 5'-nucleotidase, alkaline phosphodiesterase (nucleotide pyrophosphatase), alkaline phosphatase, leucine naphthylamidase and Mg2+-activated adenosine triphosphatase. A 'light' subfraction that showed the highest specific activities of all the above marker enzymes, but lacked a glucagon-stimulated adenylate cyclase activity, was identified as deriving from the bile-canalicular face of the hepatocyte. 4. The 'heavy' subfractions, which showed generally the lowest activities of the above plasma-membrane enzyme markers, and were characterized by the presence of desmosomes and gap junctions, were taken to originate from the contiguous faces of the hepatocyte. 5. The protein composition of the six subfractions was generally similar, as shown by polyacrylamide-gel electrophoresis. Differences in the amounts of various protein and glycoprotein bands among the subfractions correlated with their morphology, enzymic composition and sialic acid content. 6. Hormonal and histochemical evidence supporting the identification of a bile-canalicular subfraction, a blood-sinusoidal subfraction and contiguous-face subfractions is discussed.  相似文献   

6.
The subcellular localization of gamma-glutamyltransferase in calf thymocytes was investigated and compared with that of alkaline phosphodiesterase I, alkaline nitrophenyl phosphatase, succinate-tetrazolium oxidoreductase (succinate-INT reductase) and lactate dehydrogenase after two different methods of cell disruption and differential centrifugation. Most of the activity was recovered in the crude membrane fractions (43.0%), but significant amounts co-pelleted with the large-granule (mitochondria) fractions (31%). The specific activity of the gamma-glutamyltransferase in the purified plasma membrane was 30-50 times that of the enzyme in the cell homogenate and had a similar subcellular distribution to the plasma-membrane markers, alkaline phosphodiesterase I and alkaline nitrophenyl phosphatase. It was concluded that gamma-glutamyltransferase was primary a plasma-membrane-bound enzyme, and that its location in other subcellular fractions was probably due to their contamination with plasma-membrane vesicles.  相似文献   

7.
Rat spleen lymphocytes were iodinated (125 I) with lactoperoxidase. Quantitative autoradiographic studies on cells fixed immediately after iodination showed 19-24% of intracytoplasmic grains at 3HD and over from the plasma membrane. Normalization of grain density distribution and comparison of resulting curves with the universal curve of grain scatter of 125 I showed that a significant percentage of intracytoplasmic grains (36%) originates from intracytoplasmic labeled sources rather than from scattering from the heavily labeled plasma membrane. Damaged cells had a threefold grain density than intact cells. Radioactivity counts in sliced polyacrylamide gels of iodinated cells revealed 65-72% of total radioactivity in five peaks of apparent mol wt of 44, 50, 57, 90 and 195 thousand daltons. Segregation and internalization of anti-immunoglobulin-Ig-horseradish peroxidase (HRP) complexes from the iodinated plasma membrane proteins of lymphocytes was studied with quantitative autoradiography (125 I) and peroxidase cytochemistry; 64% of grains at 1.5HD (1,500 A) from the plasma membrane were within the cap zone, and 36% of grains remained outside the capped immunoglobulins; 45-57% of grains internalized together with Fab-anti-Ig-Ig-HRP, and 68% of grains internalized together with anti- Ig-Ig-HRP. These studies indicate that (a) iodination of rat spleen lymphocytes results in a significant internal labeling and that (b) immunoglobulins segregate into caps and internalize together with other iodinated plasma membrane proteins while a significant percentage of iodinated proteins (36%) are excluded from the immunoglobulin caps or internalization sites (32-55%).  相似文献   

8.
A number of "surface" enzymes of Escherichia coli (i.e., among those selectively released by osmotic shock) all displayed higher specific activities in extracts of minicells than in extracts of typical rod forms; these enzymes included alkaline phosphatase, cyclic phosphodiesterase, acid hexose monophosphatase, 5'-nucleotidase, and ribonuclease I. In addition, alkaline phosphatase, cyclic phosphodiesterase, and acid hexose monophosphatase were cytochemically localized to regions of minicell periplasm that resembled reactive polar enlargements of the periplasm in rod forms. In contrast, a number of "internal" cytoplasmic enzymes (inorganic pyrophosphatase, beta-galactosidase, glutamine synthetase, polynucleotide phosphorylase, and ribonuclease II) showed elevated or similar specific activities in extracts of rod forms versus extracts of minicells. A specific heat-labile inhibitor for 5'-nucleotidase, known to occur in the cytoplasm, also showed no enrichment in minicells. These findings indicate that the "surface" enzymes are segregated in vivo into the terminal minicell buds, possibly because these enzymes are concentrated in the polar enlargements of the periplasm in typical rod forms.  相似文献   

9.
Two new enzymes that hydrolyze diadenosine tetraphosphate (Ap4A) have been isolated from the acellular slime mold Physarum polycephalum. Both enzymes are different from the Physarum Ap4A symmetrical pyrophosphohydrolase previously described on the basis of their substrate specificities, reaction products, molecular weights, and divalent cation requirements. One enzyme is a nucleotide pyrophosphatase that asymmetrically hydrolyzes Ap4A to AMP and ATP. This enzyme hydrolyzes several mono- and dinucleotides with the corresponding nucleotide monophosphate as one of the products. The percentage hydrolysis of NAD+, Ap4A, and Ap4G, each at 10 microM, was 100, 56, and 51, respectively. A divalent cation is required for activity, with Ca2+ yielding 20-30 times greater activity than Mg2+ or Mn2+. Values of Km for Ap4A and Vmax are similar to the corresponding values for Ap4A symmetrical pyrophosphohydrolase. The second enzyme is a phosphodiesterase I with broad substrate reactivity. This enzyme also asymmetrically hydrolyzes Ap4A, but it does not hydrolyze NAD+. Activity of the phosphodiesterase I is stimulated by divalent cations, with Ca2+ being 50-60 times more stimulatory than Mg2+ or Mn2+. The apparent molecular weights of the nucleotide pyrophosphatase and phosphodiesterase are 184,000 and 45,000, respectively. In contrast, the Ap4A pyrophosphohydrolase hydrolyzes Ap4A to ADP, is inhibited by Ca2+ and other divalent cations, and has an apparent molecular weight of 26,000 as previously reported.  相似文献   

10.
Sequence analysis of the probable archaeal phosphoglycerate mutase resulted in the identification of a superfamily of metalloenzymes with similar metal-binding sites and predicted conserved structural fold. This superfamily unites alkaline phosphatase, N-acetylgalactosamine-4-sulfatase, and cerebroside sulfatase, enzymes with known three-dimensional structures, with phosphopentomutase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, phosphoglycerol transferase, phosphonate monoesterase, streptomycin-6-phosphate phosphatase, alkaline phosphodiesterase/nucleotide pyrophosphatase PC-1, and several closely related sulfatases. In addition to the metal-binding motifs, all these enzymes contain a set of conserved amino acid residues that are likely to be required for the enzymatic activity. Mutational changes in the vicinity of these residues in several sulfatases cause mucopolysaccharidosis (Hunter, Maroteaux-Lamy, Morquio, and Sanfilippo syndromes) and metachromatic leucodystrophy.  相似文献   

11.
1. Gap (communicating) junctions are plasma-membrane specializations of characteristic morphology that form transmembrane channels allowing direct communication between cells. Their preparation is described starting from mouse liver plasma membranes and the constituent polypeptides are deduced. 2. Gap junctions co-purify with collagen fibres when the plasma-membrane residues insoluble in N-dodecyl sarcosinate are fractionated on sucrose gradients. Sucrose-density perturbation by relipidation of isolated gap junctions or the use of urea to remove non-junctional membranes both failed to diminish the collagen content of fractions. 3. Removal of collagen by treatment with purified collagenase preparations yielded morphologically satisfactory gap-junction fractions. Analysis by polyacrylamide-gel electrophoresis of the polypeptides present in gap junctions prepared by procedures omitting or using collagenases indicated two non-glycosylated polypeptides, a major component of apparent mol.wt. 38000 and a minor 40000-mol.wt. component. These two polypeptides were also present in plasma membranes and the intermediate fractions. 4. Proteolysis of the gap-junction polypeptides yielding components of mol.wt. 34000, 25000 and below 20000 occurred when iodinated gap junctions were subject to prolonged collagenase treatment, thus explaining the variable polypeptide composition of gap junctions reported by others. 5. The morphological properties of the isolated gap junctions prepared by the various procedures are described.  相似文献   

12.
Several unique proteins accumulate in soybean (Glycine max) leaves when the developing fruits are removed. In the present study, elevated levels of nucleotide pyrophosphatase and phosphodiesterase I activities were present in leaves of defruited soybean plants. The soluble enzyme catalyzing these reactions was purified nearly 1000-fold, producing a preparation that contained a single 72-kD polypeptide. The molecular mass of the holoenzyme was approximately 560 kD, indicating that the native enzyme was likely octameric. The purified enzyme hydrolyzed nucleotide-sugars, nucleotide di- and triphosphates, thymidine monophosphate p-nitrophenol, and inorganic pyrophosphate but not nucleotide monophosphates, sugar mono- and bisphosphates, or NADH. The subunit and holoenzyme molecular masses and the preference for substrates distinguish the soybean leaf nucleotide pyrophosphatase/phosphodiesterase I from other plant nucleotide pyrophosphatase/phosphodiesterase I enzymes. Also, the N-terminal sequence of the soybean leaf enzyme exhibited no similarity to the mammalian nucleotide pyrophosphatase/phosphodiesterase I, soybean vegetative storage proteins, or other entries in the data bank. Thus, the soybean leaf nucleotide pyrophosphatase/phosphodiesterase I appears to be a heretofore undescribed protein that is physically and enzymatically distinct from nucleotide pyrophosphatase/phosphodiesterase I from other sources, as well as from other phosphohydrolytic enzymes that accumulate in soybean leaves in response to fruit removal.  相似文献   

13.
Modulation of nucleotide pyrophosphatase in plasmacytoma cells.   总被引:1,自引:0,他引:1  
The effect of glucocorticoid hormones on the protein responsible for both nucleotide pyrophosphatase (EC 3.6.1.9) and alkaline phosphodiesterase I (EC 3.1.4.1) activities was examined in murine MOPC 315 plasmacytoma cells. Incubation of these cells with dexamethasone resulted in parallel increases in pyrophosphatase and phosphodiesterase specific activities. The incorporation of [3H]mannose into N-linked oligosaccharide precursors was also analyzed in cells following hormone modulation. In cells treated for 36 hours or cultured continuously with dexamethasone, the resulting increase in enzyme specific activities was accompanied by a decrease in [3H]mannose incorporation, consistent with the hypothesis that in some cell types, nucleotide pyrophosphatase activity is involved in the regulation of glycoprotein synthesis.  相似文献   

14.
Cyclic nucleotide phosphodiesterase activities were examined in lymphocytes from 12 transformed human B cell lines, two T cell lines, six patients with lymphocytic leukemia, and 10 normal donors. A consistent difference bwtween cells from the normal and leukemic state was observed. The cyclic AMP phosphodiesterase activity from normal lymphocytes is inhibited greater than 80% by muM cyclic GMP while this concentration of nucleotide has little or no effect on the enzyme from transformed lymphocytic cell lines or from lymphocytic cells of leukemia patients. The reported lack of cyclic GMP phosphodiesterase in human lymphocytes from several sources is confirmed. The apparent absence of a cyclic GMP degradation mechanism and of cyclic GMP control of cyclic AMP hydrolysis may be related to defective lymphocyte growth control.  相似文献   

15.
GH receptors (GHRs) have been shown by affinity cross-linking to be present in late pregnant mouse liver microsomes in three forms with cross-linked mol wts of 125,000, 62,000, and 56,000. The two lower mol wt forms of the receptor were partially purified by bovine GH-affinity chromatography of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate-solubilized extracts of late pregnant mouse hepatic microsomes. The GHRs were identified from the partially purified receptor preparation and isolated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated GHRs had mol wts of 40,700 and 37,500, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Enzymatic cleavage of N-linked glycosylation from the isolated GHRs reduced their apparent mol wts to 33,600 and 30,900, respectively. Sixteen of the amino-terminal 17 amino acid residues of the two isolated receptors were sequenced and determined to be identical. One amino acid residue in each of the proteins, at position 14, could not be identified. Rabbit polyclonal antiserum was produced against the isolated GHRs. The resulting antiserum precipitated the isolated 40,700 and 37,500 mol wt proteins as well as cross-linked mouse GHRs (including the high mol wt form of the receptor). However, the antiserum did not inhibit the binding of mouse GH to either membrane bound or 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate-solubilized GHRs.  相似文献   

16.
An antiserum to N18 neuroblastoma cells has been used to identify a glycoprotein of apparent molecular weight greater than 200 000 D in SDS-polyacrylamide gels. This glycoprotein (Band 1) is found in culture medium of N18 cells. An immunologically similar component can be immunoprecipitated from detergent extracts of enzymatically iodinated or biosynthetically labelled viable cells. Anti-band 1 activity can be adsorbed from the antiserum by intact N18 cells but not four other cultured murine cell lines. Normal adult murine brain also adsorbs anti-band 1 activity but adult murine adrenal, heart, kidney, liver, lung, and spleen do not. Several experiments indicate that band 1 is not myosin heavy chain or the fibroblast LETS protein. Thus band 1 is a newly identified high molecular weight nervous system specific glycoprotein.  相似文献   

17.
Glycocholate and taurocholate removed from isolated pig lymphocytes a proportion of the cells' complement of 5'-nucleotidase, alkaline phosphatase and alkaline phosphodiesterase I before cell lysis. This may indicate a loss of externally orientated plasma-membrane components.  相似文献   

18.
Adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase activity of normal human peripheral blood leukocyte suspensions containing 90% lymphocytes and 10% monocytes showed anomalous kinetic behavior indicative of multiple enzyme forms. Kinetic analyses of purified lymphocyte (99%) or monocyte preparations (95%) indicated that only one type of phosphodiesterase was present in each cell type. None of the preparations contained any detectable guanosine 3':5'-monophosphate (cyclic GMP) hydrolytic activity. The lymphocyte enzyme had an apparent Km congruent to 0.4 muM for cyclic AMP and Vmax congruent to 0.5 picomoles/min/10(6) cells. These kinetic parameters were confirmed by several cell purification techniques used alone and sequentially. Sedimentation velocity analyses indicated that the higher Km monocyte enzyme had a molecular weight near 45,000 and that the lower Km lymphocyte enzyme most likely had a molecular weight near 98,000. A variety of procedures led to a loss of the higher molecular weight, high affinity enzyme leaving only the enzyme of 45,000 daltons with a much lower substrate affinity. A long term, stable human lymphoblastoid cell line had cyclic AMP phosphodiesterase activity that was similar to the lymphocyte enzyme by both physical and kinetic criteria. Lymphocyte cyclic AMP phosphodiesterase appears to be a soluble enzyme whose pH and temperature optima and cationic requirements are similar to those of other mammalian phosphodiesterases. The distinct cyclic AMP phosphodiesterase forms of these cells may possibly represent the basic, active subunit of mammalian cyclic nucleotide phosphodiesterases. We hypothesize that the extremely high affinity cyclic AMP phosphodiesterase of normal lymphocytes plays an important role in the regulation of normal function in these cells, and also in the rapid proliferative responses characteristic of the stimulated lymphocyte.  相似文献   

19.
1. Surface labelling of plasma-membrane proteins with 125I, catalysed by lactoperoxidase, and radioactive l-fucose incorporation into glycoprotein were used as plasma-membrane markers for skeletal-muscle cells in culture. 2. Plasma membranes were prepared at various stages of myogenesis in vitro and rates of synthesis and accumulation of proteins in the membranes were compared. 3. Increased synthesis and accumulation of a protein of apparent mol.wt. 70000 occurred in the plasma-membrane fraction concomitant with the onset of myoblast fusion. 4. In cultures in which fusion of myoblasts was inhibited by 5'-bromo-2-deoxyuridine, synthesis and accumulation of the protein of apparent mol.wt. 70000 was selectively inhibited. 5. It is suggested the protein of apparent mol.wt. 70000 may be involved in the process of myoblast fusion.  相似文献   

20.
Two unique cathepsin D-type proteases apparently present only in rat thoracic duct lymphocytes and in rat lymphoid tissues are described. One, termed H enzyme, has an apparent molecular weight of similar to95,000; the other, termed L enzyme, has an apparent molecular weight of similar to45,000, in common with that of most cathepsins D from other tissues and species. Both enzymes differ from cathepsin D, however, by a considerably greater sensitivity to inhibition by pepstatin and by a smaller degree of inhibition by an antiserum which inhibits rat liver cathepsin D. H enzyme is converted to L enzyme by treatment with beta-mercaptoethanol; the relationship between the two enzymes remains unknown. H and L enzyme have been detected in rat lymphoid tissues and in mouse spleen, but they are not present in other rat tissues (liver, kidney, adrenals), rabbit tissues, calf thymus, bovine spleen, or human tonsils. As measured on acid-denatured bovine hemoglobin as substrate, both enzymes have pH activity curves identical with that of rat liver cathepsin D, with optimal activity at pH 3.6. Activity on human serum albumin is much less and also shows an optimum at pH 3.6; hence, neither enzyme has the properties of cathepsin E. Thiol-reactive inhibitiors have no effect on the activity of H and L enzyme; thus they do not belong to the B group of cathepsins. Additional information, discussed in this paper, leads us to conclude that partially purified H and L enzymes are cathepsin D-type proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号